Comparison Sorts (cont.)
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:
Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar
Announcements

- Quiz 2 due tomorrow *morning*
Lecture Outline

❖ Comparison-based Sorting
 ▪ **Review**
 ▪ Simple algorithms
 • InsertionSort
 • SelectionSort
 ▪ Fancier Algorithms: HeapSort
 ▪ Fancier algorithms using Divide-and-Conquer
 • Intro
 • MergeSort
 • QuickSort
Comparison Sorting Definitions

❖ **Problem**: We have \(n \) comparable items in an array, and we want to rearrange them in such that for any index \(i \) and \(j \),

\[
\text{if } i < j, \quad \text{then } A[i] \leq A[j]
\]

❖ Notable Variations:

- **Stable sort**: if there are ties, preserve the original ordering
- **In-place sorts**: don’t use more than \(O(1) \) “auxiliary space”

❖ Why “comparison sorting”?

- If our elements can do more than just a pairwise comparison, we can use different techniques
Sorting: The Big Picture

❖ Comparison-based sorting algorithms
 ▪ Simple algorithms: $O(n^2)$
 • InsertionSort, SelectionSort
 • BubbleSort, ShellSort
 ▪ Fancier algorithms: $O(n \log n)$
 • HeapSort, MergeSort, QuickSort (randomized)
 ▪ Comparison-based sorting’s lower bound: $\Omega(n \log n)$

❖ Techniques for handling huge data sets:
 ▪ External sorting

❖ Specialized algorithms: $O(n)$
 ▪ BucketSort, RadixSort
Lecture Outline

❖ Comparison-based Sorting
 ▪ Review
 ▪ **Simple algorithms**
 • InsertionSort
 • SelectionSort
 ▪ Fancier Algorithms: HeapSort
 ▪ Fancier algorithms using Divide-and-Conquer
 • Intro
 • MergeSort
 • QuickSort
InsertionSort

- **Idea**: At step k, insert the k^{th} element in the correct position
 - Sort first two elements
 - Now insert 3^{rd} element in order
 - ...

- **Loop invariant** ("when loop index is i"):
 - First i elements are in sorted order

- **Time**:
 - Best-case: $O(n)$
 - Worst-case: $O(n^2)$
 - Randomized case: $O(n^2)$

- **Characteristics**:
 - Stable: \checkmark
 - In-place: \checkmark

Demo: https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEem8ou-zmmC7b_BE5wgNg0/present
SelectionSort

- **Idea**: At step k, select the smallest elt and put it at k^{th} position
 - Find smallest element, put it 1^{st}
 - Find next smallest element, put it 2^{nd}
 - ...

- **Loop invariant** ("when loop index is i"):
 - First i elements are the i smallest elements in sorted order

- **Time**:
 - Best-case: $O(n^2)$ Worst-case: $O(n^2)$ Randomized case: $O(n^2)$

- **Characteristics**:
 - Stable: \times In-place: \checkmark

Demo: [Link](https://docs.google.com/presentation/d/1p6g3r9BpwTARjUylA0V0ysP2temzHNJEjCG41I4r0/edit)
InsertionSort vs. SelectionSort (1 of 2)

Different algorithms, same problem

❖ InsertionSort
 ▪ Loop invariant:
 • First i elements are in sorted order

 ▪ Characteristics:
 • Stable: yes

 ▪ Time:
 • Worst-case: $O(n^2)$
 • “Average” case: $O(n^2)$

❖ SelectionSort
 ▪ Loop invariant:
 • First i elements are the i smallest elements in sorted order

 ▪ Characteristics:
 • Stable: no

 ▪ Time:
 • Worst-case: $O(n^2)$
 • “Average” case: $O(n^2)$
InsertionSort vs. SelectionSort (2 of 2)

- InsertionSort has better best-case complexity
 - Best case is when input is “mostly sorted”

- Different constants
 - InsertionSort may do well on small arrays (empirically: \(N < \sim 15 \))
 - Java’s built-in sort prefers InsertionSort for arrays <47 items

- But ...
 - There are other algorithms which are more efficient for non-small arrays that are not already “mostly sorted”
Aside: We won’t cover Bubble Sort

❖ It doesn’t have good asymptotic complexity: $O(n^2)$

❖ It’s not particularly efficient with respect to common factors

❖ Basically, almost everything it is good at, some other algorithm is at least as good at

❖ Some people seem to teach it just because someone taught it to them

❖ For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003
Lecture Outline

❖ Comparison-based Sorting
 ▪ Review
 ▪ Simple algorithms
 • InsertionSort
 • SelectionSort
 ▪ Fancier Algorithms: HeapSort
 ▪ Fancier algorithms using Divide-and-Conquer
 • Intro
 • MergeSort
 • QuickSort
Naïve HeapSort

- Idea: Put everything in a **MIN** heap; successively `deleteMin`
 - `add()` all elements into heap – OR – better yet, use `buildHeap`
 - `for(i=0; i < arr.length; i++)`
 - `arr[i] = deleteMin();`

- Loop invariant (“when loop index is `i`”):
 - First `i` elements are **the `i` smallest elements** in sorted order

- Time:
 - Best-case: \(O(n \log n) \)
 - Worst-case: \(O(n \log n) \)
 - Randomized case: \(O(n \log n) \)

- Characteristics:
 - Stable: \(\square \)
 - In-place: \(\square \)

Demo: https://goo.gl/EZWwSJ
In-place HeapSort

- **Idea:** Put everything in a **MAX** heap; successively `deleteMax`
 - insert each `arr[i]` —OR— better yet, use `buildHeap`
 - `for(i=0; i < arr.length; i++)`

    ```java
    arr[arr.length - i] = deleteMax();
    ```

- **Loop invariant** ("when loop index is `i`"): same as naïve version

- **Time:**
 - Best-case: $O(n \log n)$
 - Worst-case: $O(n \log n)$
 - "Average" case: $O(n \log n)$

- **Characteristics:**
 - Stable: **N**
 - In-place: **Y**

Demo:
https://docs.google.com/presentation/d/1SzcQC48OB9agStD0dFRgccU-tyjD6m3esrSC-GLxmNc/present
Aside: “AVLSort” and “DataStructureSort”

- We can also use a balanced tree to:
 - **add** each element: total time $O(n \log n)$
 - Do an in-order traversal $O(n)$

- But a balanced tree cannot be made in-place, and constants worse than HeapSort
 - Both are $O(n \log n)$ in worst, best, and average case
 - Neither sorts parallelizes well

- Don’t even think about trying to sort with a hash table ...
Lecture Outline

❖ Comparison-based Sorting

▪ Review

▪ Simple algorithms
 • InsertionSort
 • SelectionSort

▪ Fancier Algorithms: HeapSort

▪ Fancier algorithms using Divide-and-Conquer
 • Intro
 • MergeSort
 • QuickSort
Technique: Divide and Conquer

- Very important technique in algorithm design!
 1. Divide problem into smaller parts
 2. Solve the parts independently
 - Recursion
 - Or potentially parallelism!
 3. Combine solution of parts to produce overall solution

- Examples:
 - Sort each half of the array, then combine together
 - Split the array into “small part” and “big part”, then sort the parts
Sorting with Divide and Conquer

❖ Two great sorting methods are divide-and-conquer!

▪ MergeSort:
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole

▪ QuickSort:
 - Pick a “pivot” element
 - Partition elements into those less-than pivot and those greater-than pivot
 - Sort the less-than elements (recursively)
 - Sort the greater-than the elements (recursively)
 - All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]
Lecture Outline

❖ Comparison-based Sorting

▪ Review

▪ Simple algorithms
 • InsertionSort
 • SelectionSort

▪ Fancier Algorithms: HeapSort

▪ Fancier algorithms using Divide-and-Conquer
 • Intro
 • MergeSort
 • QuickSort
MergeSort

- To sort array from position lo to position hi:
 - If range is 1 element long, it’s sorted! (Base case)
 - Else, split into two halves:
 - “Somehow” sort from lo to (hi+lo)/2
 - “Somehow” sort from (hi+lo)/2 to hi
 - Merge the two halves together

- Merging takes two sorted parts and sorts everything
 - $O(n)$ time but requires $O(n)$ auxiliary space...
MergeSort: Merging Example (1 of 10)

- **Start with:**

<table>
<thead>
<tr>
<th>arr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

- **Return from left and right recursion**
 - (pretend it works for now)

- **Merge**
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original

<table>
<thead>
<tr>
<th>aux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
MergeSort: Merging Example (2 of 10)

- Start with:

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (3 of 10)

- Start with:

 - Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (4 of 10)

- **Start with:**

<table>
<thead>
<tr>
<th>arr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 2 9 4 5 3 1 6</td>
</tr>
</tbody>
</table>

- **Return from left and right recursion**
 - (not magic 😊)

- **Merge**
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original

<table>
<thead>
<tr>
<th>arr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 8 9 1 3 5 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>aux</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
</tr>
</tbody>
</table>
MergeSort: Merging Example (5 of 10)

- Start with:

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (6 of 10)

- Start with:

 ![Array (arr)](
 | 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |
 |
 ![Auxiliary array (aux)](
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
 |

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (7 of 10)

- **Start with:**

 - Return from left and right recursion
 - (not magic 😊)

- **Merge**
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (8 of 10)

❖ Start with:

❖ Return from left and right recursion
 - (not magic 😊)

❖ Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (9 of 10)

❖ Start with:

<table>
<thead>
<tr>
<th>arr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

❖ Return from left and right recursion
 - (not magic 😊)

❖ Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (10 of 10)

- Start with:
 ![Array 1](arr.png)

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
 ![Auxiliary Array](aux.png)

![Final Array](arr.png)
MergeSort: Recursion Example (1 of 3)

Each of these are recursive calls!

8 2 9 4 5 3 1 6

Divide

8 2 9 4

Divide

8 2

9 4

5 3

1 6

One Element (done recurring!)

8 2

9 4

5 3

1 6
MergeSort: Recursion Example (2 of 3)

Divide

One Element (done recurring!)

Merge
When a recursive call ends, its sub-arrays are *each in order*; we just need to merge them *in order together*.

Demo: https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present
Optimizations: Reducing “Dregs Copies” (1 of 2)

❖ Remember the final steps of our merge example?

arr

| 2 | 4 | 8 | 9 | 1 | 3 | 5 | 6 |

aux

| 1 | 2 | 3 | 4 | 5 | 6 |

❖ It’s wasteful to copy 8 & 9 to the auxiliary array, and then immediately copy them back into the original array!
Optimizations: Reducing “Dregs Copies” (2 of 2)

- If left side finishes first:
 - Stop the merge, and copy the auxiliary array back to the original

- If right side finishes first:
 - Stop the merge, and copy the dregs directly into right side
 - Then copy auxiliary array back to the original
Optimizations: Reducing Temp Arrays (1 of 2)

❖ Simplest / worst approach:
 • Every divide: allocate two new auxiliary arrays of size \((hi-lo)/2\)
 • Every merge: allocate another auxiliary array

❖ Better:
 • Allocate a single auxiliary array of size \(n\) at beginning to use throughout
 • Reuse “slices” of size \((hi-lo)/2\) within that array at every merge

❖ Best (but a little tricky):
 • Don’t copy back! At 2\(^{nd}\), 4\(^{th}\), 6\(^{th}\), ... merges, use the original array as the auxiliary array; at odd-numbered merges, vice-versa
 • If the number of stages is odd, need one final copy at end
Optimizations: Reducing Temp Arrays (2 of 2)

1. Recur down to sub-arrays of size 1 (no copies)
2. As we return from the recursion, switch off arrays
3. Arguably easier to code up without recursion at all
MergeSort: Runtime Analysis (1 of 3)

- MergeSort sorts n elements by:
 - Returning immediately if $n=1$
 - Doing 2 subproblems of size $n/2$ + then an $O(n)$ merge otherwise

- Runtime expression?
 - $T(1) = c_1$
 - $T(n) = 2T(n/2) + c_2n$
MergeSort: Runtime Analysis (2 of 3)

T(1) = c_1

T(n) = 2T(n/2) + c_2n

First expansion

= 2(2T(n/4) + c_2n/2) + c_2n
= 4T(n/4) + 2c_2n

Second expansion

= 4(2T(n/8) + c_2n/4) + 2c_2n
= 8T(n/8) + 3c_2n

Third expansion

= 2^kT(n/2^k) + kc_2n

If I want n/2^k = 1, let k = \log n
Then T(n) = 2^{\log n}T(1) + \log n \cdot c_2n
= c_1n + c_2n \log n
= O(n \log n)
More intuitively, this recurrence comes up often enough you should “just know” it’s $O(n \log n)$

MergeSort’s runtime is relatively easy to intuit

- Best, worst, and “average” all have the same runtime
- The recursion “tree” will have $\log n$ height and at each level we do a total amount of merging equal to n
MergeSort: Characteristics

- **Execution:**
 - Merge sorted subarrays as it “recurs upward” (ie, returns from recursive calls)

- **Characteristics:**
 - Stable: yes
 - In-place: no

- **Time:** always $O(n \log n)$

```java
mergeSort(arr, startIdx, endIdx) {
    if (startIdx == endIdx || startIdx + 1 == endIdx) {
        return;
    }
    midIdx = (endIdx - startIdx)/2 + startIdx;
    mergeSort(arr, startIdx, midIdx);
    mergeSort(arr, midIdx, endIdx);
    merge(arr, startIdx, midIdx, endIdx);
}
```
MergeSort: Final Thoughts

❖ We’ve discussed arrays, but you may need to sort linked lists
 ▪ One approach:
 • Convert to array: O(n)
 • Sort: O(n log n)
 • Convert back to list: O(n)
 ▪ Alternatively: MergeSort works well on linked lists
 • HeapSort and QuickSort do not 😞
 • InsertionSort and SelectionSort can work, but they’re slower

❖ (MergeSort is the best choice for external sorting)
 ▪ Linear merges minimize new disk accesses)