Hash Tables (cont.); Comparison Sorts CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

Ill gradescope

gradescope.com/courses/256241

- Which of the following techniques can be used for collision avoidance?
- A. Choosing a prime table size
- B. Choosing a good hash function
- e. Using separate chaining
- D. Ensuring a small λ (eg, resizing the table when λ too large)
- E. Choosing a differentiating, but not too differentiating, set of input fields to hash
- All of the above

Announcements

- & Quiz 2 released tomorrow!
 - Due Thursday <u>morning</u>!!!

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Hash Table Components

```
HashTable h;
h.add("cat", 100);
h.add("snake", 50);
h.add("dog", 200);
```

hashFunction("cat") == 2; 2 % 5 == 2 hashFunction("snake") == 2525393088; 2525393088 % 5 == 3 hashFunction("dog") == 9752423; 9752423 % 5 == 3

Separate Chaining and Load Factor

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Open Addressing Idea

- Why not use up the empty space in the table?
 - Store directly in the array cell (no linked list)
- How to deal with collisions?
 - If h (key) %TableSize is already full, ...

```
HashTable h;
h.add(100);
h.add(50);
h.add(200);
```

```
hashFunction(100) == 2;
2 % 5 == 2
hashFunction(50) == 2525393088;
2525393088 % 5 == 3
hashFunction(200) == 9752423;
9752423 % 5 == 3
```


Linear Probing: Add Example

- Our first option for resolving this collision is *linear probing*
- * If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- * Example: add 38, 19, 8, 109, 10

Open Addressing

- Open addressing resolves collisions by trying a sequence of other positions in the table
 - Trying the next spot is called probing
 - We just did linear probing:
 - ith probe: (h(key) + i) % TableSize
 - In general have some probe function f and :
 - ith probe: (h(key) + f(i)) % TableSize
- $\ast\,$ Open addressing does poorly with high load factor $\lambda\,$
 - Typically want larger tables
 - Too many probes means no more O(1) (1) (1) (1)

Linear Probing: find

- st You can figure this one out too \odot
 - Must use same probe function to "retrace the trail" for the item
 - Unsuccessful search when reach empty position
- What is find's runtime ...
 - If key is NOT there?
 - Worst case?
 - If key is in table?

Ill gradescope

gradescope.com/courses/256241

 What is find's runtime in a open addressing hash table: If key is NOT there? つ(い) Worst case つ(い) 	0	8
	1	109
	2	10
	3	-
	4	-
	5	-
	6	-
	7	-
	8	38
	9	19

Linear Probing: Remove

remove(19)

- Must use "lazy deletion"
 - Marker/tombstone indicates "no item here, but don't stop probing"
 - Without lazy deletion, find() of an existing value is incorrect; with lazy deletion, find() runs in O(n)
- As with lazy deletion on other data structures, spots marked "deleted" can be filled in during subsequent adds

0	8	8
1	109	109
2	10	10
3	-	-
4	-	-
5	-	-
6	-	-
7	-	-
8	38	38
9	19	

Linear Probing: Primary Clustering

- It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (a good thing)
- Tends to produce *clusters*, which lead to long probe sequences
 - Called primary clustering
- Saw the start of a cluster in our linear probing example

Linear Probing: Analysis (1 of 2)

* **Trivial fact:** For any $\lambda < 1$, linear probing will find an empty slot

- It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:

Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)

Unsuccessful search:

$$\frac{1}{2}\left(1+\frac{1}{\left(1-\lambda\right)^2}\right)$$

- Successful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance

Linear Probing: Analysis (2 of 2)

- * Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)
 - With open addressing, a "good" λ to aim for (s 0.5)

* By comparison, separate chaining performance is linear in λ and has no trouble with $\lambda{>}1$

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Quadratic Probing

- Avoid primary clustering by changing the probe function:
 - ith probe: (h(key) + i²) % TableSize
 - Probe sequence becomes:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing: Add Example

Quadratic Probing: Another Add Example (1 of 3)

Quadratic Probing: Another Add Example (2 of 3)

Will we ever get a 1 or 4?!?

key hashFunction int $\overset{\%}{\longrightarrow}$ table-index collision? resolved table-index

Quadratic Probing: Another Add Example (3 of 3)

In fact, for all c and k,

•
$$(c + i^2) \% k = (c + (i - k)^2) \% k$$

Quadratic Probing: Bad News / Good News

Bad News:

- After TableSize probes, we cycle through the same indices
- Good News:
 - If TableSize is prime and λ < ½, then quadratic probing will find an empty slot in at most TableSize/2 probes
 - So: If you keep $\lambda < \frac{1}{2}$ and Tablesize is prime, no need to detect cycles
- Proof posted online after lecture
 - Textbook also has proof, but it's slightly less detailed

Quadratic Probing: Success Guarantee (1 of 2)

If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty bucket in TableSize/2 probes or fewer

- Intuition: if the table is less than half full, then probing TableSize/2 distinct buckets must find an empty one
 - Therefore, prove the first TableSize/2 probes are distinct

Any ith and any jth probe results in a distinct bucket * <u>Theorem</u>: for all $0 \le i,j \le TableSize/2$, and $i \ne j$ (h(x) + i²) % TableSize \ne (h(x) + j²) % TableSize

Quadratic Probing: Success Guarantee (2 of 2)

* <u>Proof, by contradiction</u>: suppose that for some $i \neq j$:

Quadratic Probing: Secondary Clustering

- Quadratic probing does not suffer from primary clustering!
 - We don't grow "big blobs" by adding to the end of a cluster
- Quadratic probing does not resolve collisions between different keys that hash to the same index
 - These keys have the same series of moves looking for an empty spot
 - Called secondary clustering (*)
- Since the problem occurs when we have the different keys hashing to the same initial index, can we avoid secondary clustering with a probe function that also incorporates the key?
 - Known as double hashing

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Double Hashing

- Double hashing:
 - ith probe: (h(key) + i*g(key)) % TableSize
 - Probe sequence becomes:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + g(key)) % TableSize
 - 2nd probe: (h(key) + 2*g(key)) % TableSize

• ...

- Idea:
 - g(key) lets us "go different places from initial collisions"
 - It is very unlikely that for some key, h(key) == g(key)
 - (assuming good hash functions h and g)
 - i*g(key) lets us "leave the neighborhood"
- Detail: Ensure g (key) can't generate 0

29

Double Hashing: Add Example (1 of 3)

%

int

kev

table-index

Double Hashing: Add Example (2 or 3)

Example: add 13, 28, 33, 147, 43	0	-
<pre>■ Remember: (h (key) + i*g(key)) % TableSize</pre>	1	-
Let h(x) = x%TableSize	2	-
Let g(x) = 1 + ((x/TableSize) % (TableSize-1))	3	13
Let TableSize = 10	4	33
h(43) = 3 and g(43) = 1 + (4%9) = 5	5	-
3 + 0*5 = 3 collision!	6	-
 3 + 1*5 = 8 collision! 2 + 2*5 = 12 collision 	7	147
	8	28
• will we ever get anything else?!?	9	-
hashFunction % collision? resolved		

table-index

Double Hashing: Add Example (3 of 3)

	0	-
<pre>■ Remember: (h(key) + i*g(key)) % TableSize</pre>	1	-
Let h(x) = x%TableSize	2	-
<pre>Let g(x) = 1 + ((x/TableSize) % (TableSize-1))</pre>	3	13
Let TableSize = 10	4	33
Will we ever get anything else?!?	5	-
 No. add(43) will always fail here. Why? 	6	-
	7	147
	8	28
	9	-
key int % table-index collision? resolved table-index		

Double Hashing: Considerations (1 of 2)

- ♦ Our example implies the possibility of infinite probe sequences ☺
 - But we can be avoid infinite probes if our functions are:
 - h(key) = hash1(key) % p
 - g(key) = q (hash2(key) % q)
 - And p and q are primes, with 2 < q < p</p>

Double Hashing: Considerations (2 of 2)

- Double hashing:
 - ith probe: (h(key) + i*g(key)) % TableSize
- Assume g (key) divides TableSize
 - That is, there exists some integer x such that x*g(key)=TableSize
 - Therefore: after x probes, we'll "loop through" the same indices as before
 - Example:
 - TableSize=50
 - g(key)=25
 - Probe sequence:
 - i=0: h(key)
 - i=1: h(key)+25
 - i=2: h(key)+50 = h(key)
 - i=3: h(key)+75 = h(key)+25

```
- ...
```

- Bottom line: don't let g (key) divide TableSize
 - That is, choose a prime TableSize when using double hashing

Double Hashing: Performance

- Assume g() distributes its keys uniformly over its range
 - That is: probability of g(key1) %p == g(key2) %p is 1/p
- We won't prove the following:
 - Average # of probes (in the limit as TableSize $\rightarrow \infty$), **unsuccessful** find: _____

$$1 - \lambda$$

• Average # of probes (in the limit as TableSize $\rightarrow \infty$), successful find:

$$\frac{1}{\lambda}\log_{e}\left(\frac{1}{1-\lambda}\right)$$

- Bottom line:
 - Performance of unsuccessful finds degrades with λ (but not as quickly as linear probing degrades)
 - Performance of successful finds degrades not nearly as quickly

Double Hashing vs Linear Probing Performance

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Separate Chaining vs Open Addressing

✤ Separate Chaining

- find, add, remove proportional to λ if using unsorted LL
- If using another data structure for buckets (e.g. AVL tree), runtime is proportional to runtime for that structure
- * Open addressing: has clustering issues as table fills ($\lambda > 1/2$)
 - Why use it:
 - Some runtime for allocating nodes; open addressing could be faster?
 - Easier data representation?

Rehashing (1 of 3)

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and "copy" everything over
- With separate chaining, we decide what "too full" means
 - Keep load factor reasonable (e.g., < 2)?</p>
 - Consider average or max size of non-empty chains?
- For <u>open addressing</u>, half-full is a good rule of thumb

Rehashing (2 of 3)

- Can't actually copy to the same indices in the new table
 - We'd calculated the index based on TableSize
- For each key/value in old table, must add into new table
 - Iterate over old table: O(n)
 - n calls to the hash function: n · O(1) = O(n)
- Can we avoid all those hash function calls?
 - \blacksquare Space/time tradeoff: Could store h ($key) \ \mbox{with each item}$
 - Iterating over the table is still O(n); saving h (key) only helps by a constant factor

Rehashing (3 of 3)

- New table size
 - Twice-as-big is a good idea, except ... ummm ... that won't be prime!
 - So go about twice-as-big
 - Hard-coded list of primes (you probably won't grow more than 20-30 times)
 - Calculate primes after that

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns) <-- Skipped during lecture
 Conclusion
 - Conclusion
- Comparison Sorting
 - Intro

Hashing and Equality Testing

Skipped

- Our examples use an int key, which overlooks a critical detail:
 - We <u>hash</u> K to get a table index
 - While chaining or probing, we need to test whether the current K' is equal to the K we're looking for
- * So a Java hash table needs a hash and an equality function
 - Fortunately, in Java every object defines an equals and a hashCode method

```
class Object {
   boolean equals(Object o) {...}
   int hashCode() {...}
   ...
}
```

Overriding equals()? Override hashCode() too

- The Java library (and your project's hash table) make a very important assumption that *all* clients must satisfy:
 - Object-oriented way of saying it: If a.equals(b), then a.hashCode() == b.hashCode()
 - Functor way of saying it:

lf c.compare(a,b) == 0, then

h.hashCode(a) == h.hashCode(b)

- In other words, if you ever override equals:
 - You must also override hashCode() in a consistent way
 - See <u>Core Java</u> book, Ch. 5, for other "gotchas" with equals()

compareTo() rules

Skipped U

- ✤ Java also makes assumptions about compareTo() that affect:
 - All our dictionaries
 - Sorting (next major topic)
- Comparison must impose a consistent, total ordering:
 - For all **a**, **b**, and **c**,
 - If a.compareTo(b) < 0, then b.compareTo(a) > 0
 - If a.compareTo(b) == 0, then b.compareTo(a) == 0
 - If a.compareTo(b) < 0 and b.compareTo(c) < 0,
 then a.compareTo(c) < 0</pre>

CSE332, Spring 2021

A Generally-Good hashCode()

```
int result = 17; // start at a prime
foreach field f
  int fieldHashcode =
    boolean: (f ? 1: 0)
    byte, char, short, int: (int) f
    long: (int) (f ^ (f >>> 32))
    float: Float.floatToIntBits(f)
    double: Double.doubleToLongBits(f),
        then above conversion to int
    Object: object.hashCode()
  result = 31 * result + fieldHashcode;
return result;
```


Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Who Hashes What?

 When used as a library, hash tables generally have two roles: client vs library

- We learned both, but you'll spend more time as clients
 - Both roles must contribute to minimizing collisions
 - Client should aim for different ints for expected keys
 - Avoid "wasting" any part of K or the int's bits
 - Library should aim for putting "similar" ints in different indices
 - Conversion to index is almost always "mod table-size"
 - Using prime numbers for table-size is common

Summary: Hash Tables vs. Balanced Trees

- In terms of a Dictionary ADT for just add, find, remove, hash tables and balanced trees are just different data structures
 - Hash tables O(1) on average (assuming few collisions)
 - Balanced trees O(log n) worst-case
- Constant-time is better, right?
 - Yes, but you need "hashing to behave" (must avoid collisions)
 - Yes, but what if we want to findMin, findMax, predecessor, and successor, printSorted?
 - Hash tables are not designed to efficiently implement these operations
 - Your textbook considers hash tables to be a different ADT; not so important to argue over the definitions

Summary: Hash Table (1 of 2)

- * Hash tables are categorized by collision *resolution* strategy:
 - Separate chaining: use an auxiliary data structure so that colliding keys can both use the same index
 - Simple is best (eg, linked list, or LL + an extra key/value slot)
 - λ can be > 1, but recommend keeping it "smallish"
 - Open addressing: look elsewhere in the array if keys collide. $\lambda \leq 1$
 - Linear probing: finds a slot if $\lambda < 1$, but primary clustering severely impacts performance (secondary clustering is also a consideration)
 - Quadratic probing: finds a slot if λ < 0.5. No primary clustering but secondary clustering is possible
 - **Double hashing**: finds depending on how h(x) and g(x) are constructed.

Summary: Hash Table (2 of 2)

- * Collision avoidance applicable to both types of hash table
 - Crucial to use a good hash function: deterministic, fast, uniform
 - Which fields to hash is **important**: need "just enough" differentiation
 - Array size is important:
 - Choose a prime size
 - "Preferred λ " depends on type of table; resize (rehash) to maintain
- What we skipped:
 - Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
- The hash table is one of the most important data structures
 - Useful in many, many, many real-world applications

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro

Introduction to Sorting (1 of 2)

- Stacks, queues, priority queues, and dictionaries/sets all provide one element at a time
- But often we want "all the items" in some order
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
- Different sorting algorithms have different asymptotic and constant-factor trade-offs
 - Knowing one way to sort just isn't enough; no single "best sort"
 - Sorting is an excellent case-study in making trade-offs!

Introduction to Sorting (2 of 2)

- Preprocessing (e.g. sorting) data to make subsequent operations faster is a general technique in computing!
 - Example: Sort the items so that you can:
 - + Find the \mathbf{k}^{th} largest in constant time for any \mathbf{k}
 - Perform binary search to find an item in logarithmic time
 - Whether preprocessing is beneficial depends on
 - How often the items will change
 - How many items there are
- Preprocessing's benefits depend on how often the items will change and how many items there are
 - Sorting is an excellent case-study in making trade-offs!

Comparison Sorting: Definition

- <u>Problem</u>: We have *n* comparable items in an array, and we want to rearrange them to be in increasing order
- Input:
 - An array A of (key, value) pairs
 - A comparison function (consistent and total)
 - Given keys a & b, what is their relative ordering? <, =, >?
 - Ex: keys that implement Comparable or have a Comparator
- Output/Side-Effect:
 - Reorganize the elements of A such that for any index i and j, if i < j then A[i] ≤ A[j]</p>
 - [Usually unspoken] A must have all the same items it started with
 - Could also sort in reverse order, of course

Comparison Sort: Variations (1 of 2)

- 1. Maybe elements are in a linked list
 - Could convert to array and back in linear time, but some algorithms can still "work" on linked lists
- 2. Maybe if there are ties we should preserve the original ordering
 - Sorts that do this naturally are called **stable sorts**
- 3. Maybe we must not use more than O(1) "auxiliary space"
 - These are called in-place sorts
 - Not allowed to allocate memory proportional to input (i.e., O(n)), but can allocate O(1) # of variables
 - Work is done by swapping around in the array

Comparison Sort: Variations (2 of 2)

- 4. Maybe we can do more with elements than just compare
 - Comparison sorts assume a binary 'compare' operator
 - In special cases we can sometimes get faster algorithms
- 5. Maybe we have too many items to fit in memory
 - Use an external sorting algorithm

Sorting: The Big Picture

- * Simple comparison-based algorithms: $O(n^2)$
 - InsertionSort, SelectionSort
 - BubbleSort, ShellSort
- Fancier comparison-based algorithms: O(n log n)
 - HeapSort, MergeSort, QuickSort (randomized)
- * Comparison-based sorting's lower bound: $\Omega(n \log n)$
- Specialized algorithms: O(n)
 - BucketSort, RadixSort
- Handling huge data sets:
 - External sorting

Lecture Outline

- Hash Tables
 - Review
 - Collision Resolution: Open Addressing
 - Intro
 - Quadratic Probing
 - Double Hashing
 - Collision Avoidance: Rehashing
 - (Java-specific Hash Table Concerns)
 - Conclusion
- Comparison Sorting
 - Intro