
CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Hash Tables (cont.);
Comparison Sorts
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L13: Hash Tables (cont); Comparison Sorts

❖ Which of the following techniques can be used for collision avoidance?

A. Choosing a prime table size

B. Choosing a good hash function

C. Using separate chaining

D. Ensuring a small  (eg, resizing the table when  too large)

E. Choosing a differentiating, but not too differentiating, set of input
fields to hash

F. All of the above

2

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Announcements

❖ Quiz 2 released tomorrow!

▪ Due Thursday morning!!!

3

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

4

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

0 - -

1 - -

2 snake 100

3 bee 50

4 - -

Hash Table Components

5

HashTable h;

h.add(“cat”, 100);

h.add(“snake”, 50);

h.add(“dog”, 200);

hashFunction(“cat”) == 2;

2 % 5 == 2

hashFunction(“snake”) == 2525393088;

2525393088 % 5 == 3

hashFunction(“dog”) == 9752423;

9752423 % 5 == 3

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Separate Chaining and Load Factor

6

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10

31411

107

3233

10334733

11

95

9999

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10

421222

107

N

TableSize
 =

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

7

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Open Addressing Idea

❖ Why not use up the empty space in the table?

▪ Store directly in the array cell (no linked list)

❖ How to deal with collisions?

▪ If h(key)%TableSize is already full, …

8

HashTable h;

h.add(100);

h.add(50);

h.add(200);

hashFunction(100) == 2;

2 % 5 == 2

hashFunction(50) == 2525393088;

2525393088 % 5 == 3

hashFunction(200) == 9752423;

9752423 % 5 == 3

0 -

1 -

2 100

3 50

4 200

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Linear Probing: Add Example

❖ Our first option for resolving this collision
is linear probing

❖ If h(key) is already full,

▪ try (h(key) + 1) % TableSize. If full,

▪ try (h(key) + 2) % TableSize. If full,

▪ try (h(key) + 3) % TableSize. If full…

❖ Example: add 38, 19, 8, 109, 10

9

0

1

2

3 -

4 -

5 -

6 -

7 -

8

9

38

19

8

109

10

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Open Addressing

❖ Open addressing resolves collisions by trying a sequence of
other positions in the table

▪ Trying the next spot is called probing

▪ We just did linear probing:

• ith probe: (h(key) + i) % TableSize

▪ In general have some probe function f and :

• ith probe: (h(key) + f(i)) % TableSize

❖ Open addressing does poorly with high load factor 

▪ Typically want larger tables

▪ Too many probes means no more O(1) 😭😭😭

10

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Linear Probing: find

❖ You can figure this one out too ☺

▪ Must use same probe function to “retrace the trail” for the item

▪ Unsuccessful search when reach empty position

❖ What is find’s runtime …

▪ If key is NOT there?

▪ Worst case?

▪ If key is in table?

11

CSE332, Spring 2021

gradescope.com/courses/256241

L13: Hash Tables (cont); Comparison Sorts

❖ What is find’s runtime in a open addressing hash table:

▪ If key is NOT there?

▪ Worst case

12

0 8

1 109

2 10

3 -

4 -

5 -

6 -

7 -

8 38

9 19

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

0 8

1 109

2 10

3 -

4 -

5 -

6 -

7 -

8 38

9 ☠️

0 8

1 109

2 10

3 -

4 -

5 -

6 -

7 -

8 38

9 19

Linear Probing: Remove

❖ remove(19)

❖ Must use “lazy deletion”

▪ Marker/tombstone indicates “no item here, but don’t
stop probing”

▪ Without lazy deletion, find() of an existing value is
incorrect; with lazy deletion, find() runs in ________

❖ As with lazy deletion on other data structures,
spots marked “deleted” can be filled in during
subsequent adds

13

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Linear Probing: Primary Clustering

❖ It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

• Tends to produce clusters,
which lead to long probe
sequences

• Called primary clustering

• Saw the start of a cluster
in our linear probing
example

14

[R. Sedgewick]

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Linear Probing: Analysis (1 of 2)

❖ Trivial fact: For any  < 1, linear probing will find an empty slot

▪ It is “safe” in this sense: no infinite loop unless table is full

❖ Non-trivial facts we won’t prove:

Average # of probes given  (in the limit as TableSize→)

▪ Unsuccessful search:

▪ Successful search:

❖ This is pretty bad: need to leave sufficient empty space in the
table to get decent performance

15

() 








−
+

2
1

1
1

2

1



()









−
+

1

1
1

2

1

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Linear Probing: Analysis (2 of 2)

❖ Linear-probing performance degrades rapidly as table gets full

▪ (Formula assumes “large table” but point remains)

▪ With open addressing, a “good”  to aim for is 0.5

❖ By comparison, separate chaining performance is linear in 
and has no trouble with >1

16

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

17

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing

❖ Avoid primary clustering by changing the probe function:

▪ ith probe: (h(key) + i2) % TableSize

▪ Probe sequence becomes:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

❖ Intuition: Probes quickly “leave the neighborhood”

18

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Add Example

❖ Example: add 89, 18, 49, 58, 79

▪ Let hashFunction(x) = x

▪ Let TableSize = 10

19

0

1 -

2

3

4 -

5 -

6 -

7 -

8

9

18

89

49

79

58

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Another Add Example (1 of 3)

❖ Example: add 76, 40, 48, 5, 55, 47

▪ Let hashFunction(x) = x

▪ Let TableSize = 7

20

0

1 -

2

3

4 -

5

6

40

76

48

55

5

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Another Add Example (2 of 3)

❖ Example: add 76, 40, 48, 5, 55, 47

▪ Let hashFunction(x) = x

▪ Let TableSize = 7

▪ (47 + 1) % 7 = 6 collision!

▪ (47 + 4) % 7 = 2 collision!

▪ (47 + 9) % 7 = 0 collision!

▪ (47 + 16) % 7 = 0 collision!

▪ (47 + 25) % 7 = 2 collision!

▪ Will we ever get a 1 or 4?!?

21

0

1 -

2

3

4 -

5

6

40

76

48

55

5

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Another Add Example (3 of 3)

❖ Example: add 76, 40, 48, 5, 55, 47

❖ Will we ever get a 1 or 4?!?

▪ add(47) will always fail here. Why?

▪ For all i, (5 + i2) % 7 is 0, 2, 5, or 6

▪ Proof uses induction and

• (5 + i2) % 7 = (5 + (i - 7) 2) % 7

❖ In fact, for all c and k,

▪ (c + i2) % k = (c + (i - k) 2) % k

22

0

1 -

2

3

4 -

5

6

40

76

48

55

5

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Bad News / Good News

❖ Bad News:

▪ After TableSize probes, we cycle through the same indices

❖ Good News:

▪ If TableSize is prime and  < ½, then quadratic probing will find
an empty slot in at most TableSize/2 probes

▪ So: If you keep  < ½ and TableSize is prime, no need to detect cycles

❖ Proof posted online after lecture

▪ Textbook also has proof, but it’s slightly less detailed

23

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Success Guarantee (1 of 2)

❖ Intuition: if the table is less than half full, then probing
TableSize/2 distinct buckets must find an empty one
▪ Therefore, prove the first TableSize/2 probes are distinct

❖ Theorem: for all 0  i,j  TableSize/2, and i  j

(h(x) + i2) % TableSize  (h(x) + j2) % TableSize

24

Any ith and any jth probe results in a distinct bucket

If TableSize is prime and  < ½, then quadratic probing
will find an empty bucket in TableSize/2 probes or fewer

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Success Guarantee (2 of 2)

❖ Proof, by contradiction: suppose that for some i  j:
(h(x) + i2) % TableSize = (h(x) + j2) % TableSize

 i2 % TableSize = j2 % TableSize

 (i2 - j2) % TableSize = 0

 [(i + j)(i - j)] % TableSize = 0

 [(i + j)(i - j)] = k*TableSize for some k ≥1

or

[(i + j)(i - j)] = 0

❖ How can i+j = 0 or i+j = k*TableSize when:
0  i,j and ij and i,j  TableSize/2?

❖ How can i-j = 0 or i-j = k*TableSize when
i  j and i,j  TableSize/2 ?

25

CONTRADICTION!

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Quadratic Probing: Secondary Clustering

❖ Quadratic probing does not suffer from primary clustering!

▪ We don’t grow “big blobs” by adding to the end of a cluster

❖ Quadratic probing does not resolve collisions between
different keys that hash to the same index

▪ These keys have the same series of moves looking for an empty spot

▪ Called secondary clustering

❖ Since the problem occurs when we have the different keys
hashing to the same initial index, can we avoid secondary
clustering with a probe function that also incorporates the key?

▪ Known as double hashing

26



CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

27

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Double Hashing

❖ Double hashing:

▪ ith probe: (h(key) + i*g(key)) % TableSize

▪ Probe sequence becomes:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• …

❖ Idea:

▪ g(key) lets us “go different places from initial collisions”

• It is very unlikely that for some key, h(key) == g(key)

• (assuming good hash functions h and g)

▪ i*g(key) lets us “leave the neighborhood”

❖ Detail: Ensure g(key) can’t generate 0
28

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

0 -

1 -

2 -

3

4

5 -

6

7 147

8

9 -

Double Hashing: Add Example (1 of 3)

❖ Example: add 13, 28, 33, 147, 43

▪ Remember: (h(key) + i*g(key)) % TableSize

▪ Let h(x) = x%TableSize

▪ Let g(x) = 1 + ((x/TableSize) % (TableSize-1))

▪ Let TableSize = 10

29

28

13

33

-

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

0 -

1 -

2 -

3

4

5 -

6

7 147

8

9 -

Double Hashing: Add Example (2 or 3)

❖ Example: add 13, 28, 33, 147, 43

▪ Remember: (h(key) + i*g(key)) % TableSize

▪ Let h(x) = x%TableSize

▪ Let g(x) = 1 + ((x/TableSize) % (TableSize-1))

▪ Let TableSize = 10

▪ h(43) = 3 and g(43) = 1 + (4%9) = 5

▪ 3 + 0*5 = 3 collision!

▪ 3 + 1*5 = 8 collision!

▪ 3 + 2*5 = 13 collision

▪ Will we ever get anything else?!?

30

28

13

33

-

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

0 -

1 -

2 -

3

4

5 -

6

7 147

8

9 -

Double Hashing: Add Example (3 of 3)

❖ Example: add 13, 28, 33, 147, 43

▪ Remember: (h(key) + i*g(key)) % TableSize

▪ Let h(x) = x%TableSize

▪ Let g(x) = 1 + ((x/TableSize) % (TableSize-1))

▪ Let TableSize = 10

▪ Will we ever get anything else?!?

• No. add(43) will always fail here. Why?

31

28

13

33

-

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Double Hashing: Considerations (1 of 2)

❖ Our example implies the possibility of infinite probe sequences 

▪ But we can be avoid infinite probes if our functions are:

• h(key) = hash1(key) % p

• g(key) = q – (hash2(key) % q)

▪ And p and q are primes, with 2 < q < p

32

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Double Hashing: Considerations (2 of 2)

❖ Double hashing:
▪ ith probe: (h(key) + i*g(key)) % TableSize

❖ Assume g(key) divides TableSize
▪ That is, there exists some integer x such that x*g(key)=TableSize
▪ Therefore: after x probes, we’ll “loop through” the same indices as before
▪ Example:

• TableSize=50

• g(key)=25

• Probe sequence:
– i=0: h(key)
– i=1: h(key)+25
– i=2: h(key)+50 = h(key)
– i=3: h(key)+75 = h(key)+25
– …

❖ Bottom line: don’t let g(key) divide TableSize
▪ That is, choose a prime TableSizewhen using double hashing

33

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Double Hashing: Performance

❖ Assume g() distributes its keys uniformly over its range

▪ That is: probability of g(key1)%p == g(key2)%p is 1/p

❖ We won’t prove the following:

▪ Average # of probes (in the limit as TableSize →), unsuccessful find:

▪ Average # of probes (in the limit as TableSize →), successful find:

❖ Bottom line:

▪ Performance of unsuccessful finds degrades with  (but not as
quickly as linear probing degrades)

▪ Performance of successful finds degrades not nearly as quickly

34

1

1 −

1 1
log

1
e

 

 
 
− 

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Double Hashing vs Linear Probing Performance

35

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

36

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Separate Chaining vs Open Addressing

❖ Separate Chaining

▪ find, add, remove proportional to  if using unsorted LL

▪ If using another data structure for buckets (e.g. AVL tree) , runtime is
proportional to runtime for that structure

❖ Open addressing: has clustering issues as table fills ( > 1/2)

▪ Why use it:

• Some runtime for allocating nodes; open addressing could be faster?

• Easier data representation?

37

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Rehashing (1 of 3)

❖ As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and “copy” everything over

❖ With separate chaining, we decide what “too full” means

▪ Keep load factor reasonable (e.g., < 2)?

▪ Consider average or max size of non-empty chains?

❖ For open addressing, half-full is a good rule of thumb

38

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Rehashing (2 of 3)

❖ Can’t actually copy to the same indices in the new table

▪ We’d calculated the index based on TableSize

❖ For each key/value in old table, must add into new table

▪ Iterate over old table: O(n)

▪ n calls to the hash function: n ⋅ O(1) = O(n)

❖ Can we avoid all those hash function calls?

▪ Space/time tradeoff: Could store h(key) with each item

▪ Iterating over the table is still O(n); saving h(key) only helps by a
constant factor

39

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Rehashing (3 of 3)

❖ New table size

▪ Twice-as-big is a good idea, except … ummm … that won’t be prime!

▪ So go about twice-as-big

• Hard-coded list of primes (you probably won’t grow more than 20-30 times)

• Calculate primes after that

40

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

41

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Hashing and Equality Testing

❖ Our examples use an int key, which overlooks a critical detail:

▪ We hash K to get a table index

▪ While chaining or probing, we need to test whether the current K’ is
equal to the K we’re looking for

❖ So a Java hash table needs a hash and an equality function

▪ Fortunately, in Java every object defines an equals and a
hashCode method

42

class Object {

boolean equals(Object o) {…}

int hashCode() {…}

…

}

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Overriding equals()? Override hashCode() too

❖ The Java library (and your project’s hash table) make a very
important assumption that all clients must satisfy:

▪ Object-oriented way of saying it:

If a.equals(b), then a.hashCode() == b.hashCode()

▪ Functor way of saying it:

If c.compare(a,b) == 0, then

h.hashCode(a) == h.hashCode(b)

❖ In other words, if you ever override equals:
▪ You must also override hashCode() in a consistent way

▪ See Core Java book, Ch. 5, for other "gotchas" with equals()

43

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

compareTo() rules

❖ Java also makes assumptions about compareTo() that affect:

▪ All our dictionaries

▪ Sorting (next major topic)

❖ Comparison must impose a consistent, total ordering:

▪ For all a, b, and c,

• If a.compareTo(b) < 0, then b.compareTo(a) > 0

• If a.compareTo(b) == 0, then b.compareTo(a) == 0

• If a.compareTo(b) < 0 and b.compareTo(c) < 0,
then a.compareTo(c) < 0

44

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

A Generally-Good hashCode()

int result = 17; // start at a prime

foreach field f

int fieldHashcode =

boolean: (f ? 1: 0)

byte, char, short, int: (int) f

long: (int) (f ^ (f >>> 32))

float: Float.floatToIntBits(f)

double: Double.doubleToLongBits(f),

then above conversion to int

Object: object.hashCode()

result = 31 * result + fieldHashcode;

return result;

45

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

46

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Who Hashes What?

❖ When used as a library, hash tables generally have two roles:
client vs library

❖ We learned both, but you’ll spend more time as clients

▪ Both roles must contribute to minimizing collisions

▪ Client should aim for different ints for expected keys

• Avoid “wasting” any part of K or the int’s bits

▪ Library should aim for putting “similar” ints in different indices

• Conversion to index is almost always “mod table-size”

• Using prime numbers for table-size is common
47

key int table-index
collision? resolved

table-index
hashFunction %

Client
Library

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Summary: Hash Tables vs. Balanced Trees

❖ In terms of a Dictionary ADT for just add, find, remove,
hash tables and balanced trees are just different data
structures

▪ Hash tables O(1) on average (assuming few collisions)

▪ Balanced trees O(log n) worst-case

❖ Constant-time is better, right?

▪ Yes, but you need “hashing to behave” (must avoid collisions)

▪ Yes, but what if we want to findMin, findMax, predecessor,
and successor, printSorted?

• Hash tables are not designed to efficiently implement these operations

• Your textbook considers hash tables to be a different ADT; not so important
to argue over the definitions

48

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Summary: Hash Table (1 of 2)

❖ Hash tables are categorized by collision resolution strategy:

▪ Separate chaining: use an auxiliary data structure so that colliding
keys can both use the same index

• Simple is best (eg, linked list, or LL + an extra key/value slot)

•  can be > 1, but recommend keeping it “smallish”

▪ Open addressing: look elsewhere in the array if keys collide.  ≤ 1

• Linear probing: finds a slot if  < 1, but primary clustering severely impacts
performance (secondary clustering is also a consideration)

• Quadratic probing: finds a slot if  < 0.5. No primary clustering but
secondary clustering is possible

• Double hashing: finds depending on how h(x) and g(x) are constructed.

49

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Summary: Hash Table (2 of 2)

❖ Collision avoidance applicable to both types of hash table
▪ Crucial to use a good hash function: deterministic, fast, uniform
▪ Which fields to hash is important: need “just enough” differentiation

▪ Array size is important:
• Choose a prime size
• “Preferred ” depends on type of table; resize (rehash) to maintain

❖ What we skipped:

▪ Perfect hashing, universal hash functions, hopscotch hashing, cuckoo
hashing

❖ The hash table is one of the most important data structures
▪ Useful in many, many, many real-world applications

50

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

51

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Introduction to Sorting (1 of 2)

❖ Stacks, queues, priority queues, and dictionaries/sets all
provide one element at a time

❖ But often we want “all the items” in some order

▪ Alphabetical list of people

▪ Population list of countries

▪ Search engine results by relevance

❖ Different sorting algorithms have different asymptotic and
constant-factor trade-offs

▪ Knowing one way to sort just isn’t enough; no single “best sort”

▪ Sorting is an excellent case-study in making trade-offs!

52

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Introduction to Sorting (2 of 2)

❖ Preprocessing (e.g. sorting) data to make subsequent
operations faster is a general technique in computing!

▪ Example: Sort the items so that you can:

• Find the kth largest in constant time for any k

• Perform binary search to find an item in logarithmic time

▪ Whether preprocessing is beneficial depends on

• How often the items will change

• How many items there are

❖ Preprocessing’s benefits depend on how often the items will
change and how many items there are

▪ Sorting is an excellent case-study in making trade-offs!

53

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Comparison Sorting: Definition

❖ Problem: We have n comparable items in an array, and we
want to rearrange them to be in increasing order

❖ Input:

▪ An array A of (key, value) pairs

▪ A comparison function (consistent and total)

• Given keys a & b, what is their relative ordering? <, =, >?

• Ex: keys that implement Comparable or have a Comparator

❖ Output/Side-Effect:

▪ Reorganize the elements of A such that for any index i and j,

if i < j then A[i]  A[j]

▪ [Usually unspoken] A must have all the same items it started with

▪ Could also sort in reverse order, of course
54

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Comparison Sort: Variations (1 of 2)

1. Maybe elements are in a linked list

▪ Could convert to array and back in linear time, but some algorithms
can still “work” on linked lists

2. Maybe if there are ties we should preserve the original
ordering

▪ Sorts that do this naturally are called stable sorts

3. Maybe we must not use more than O(1) “auxiliary space”

▪ These are called in-place sorts

▪ Not allowed to allocate memory proportional to input (i.e., O(n)),
but can allocate O(1) # of variables

▪ Work is done by swapping around in the array

55

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Comparison Sort: Variations (2 of 2)

4. Maybe we can do more with elements than just compare

▪ Comparison sorts assume a binary ‘compare’ operator

▪ In special cases we can sometimes get faster algorithms

5. Maybe we have too many items to fit in memory

▪ Use an external sorting algorithm

56

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Sorting: The Big Picture

❖ Simple comparison-based algorithms: O(n2)

▪ InsertionSort, SelectionSort

▪ BubbleSort, ShellSort

❖ Fancier comparison-based algorithms: O(n log n)

▪ HeapSort, MergeSort, QuickSort (randomized)

❖ Comparison-based sorting’s lower bound: (n log n)

❖ Specialized algorithms: O(n)

▪ BucketSort, RadixSort

❖ Handling huge data sets:

▪ External sorting

57

CSE332, Spring 2021L13: Hash Tables (cont); Comparison Sorts

Lecture Outline

❖ Hash Tables

▪ Review

▪ Collision Resolution: Open Addressing

• Intro

• Quadratic Probing

• Double Hashing

▪ Collision Avoidance: Rehashing

▪ (Java-specific Hash Table Concerns)

▪ Conclusion

❖ Comparison Sorting

▪ Intro

58

