YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Set and Dictionary ADTs: Hash
Tables

CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Announcements

+ Next week is a quiz week!
= Released on Tuesday morning, due Thursday morning
® Practice Quiz #2 coming soon

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Lecture Outline

« Hashing != Hash Tables
® Designing our own Hash Function
® Hashing Applications

+ Hash Tables
® Introduction
= Collision Avoidance Concepts
= Collision Resolution: Separate Chaining

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables

CSE332, Spring 2021

What is Hashing?

+ Hashing is taking data of arbitrary size and type and converting
it to an fixed-size integer (ie, an integer in a predefined range)

« Running example: design a hash function that maps strings to
32-bit integers [-2147483648, 2147483647]

« A good hash function exhibits the following properties:
® Deterministic: same input should generate the same output
= Efficient: should take a reasonable amount of time
= Uniform: should spread inputs “evenly” over its output range

W UNIVERSITY of WASHINGTON

Bad Hashing

L12: Hashing; Hash Tables

CSE332, Spring 2021

int hashFn (String s)
return
Random.nextInt () ;

N/

{

int hashFn (String s) {
int retval = 0;

for (int i = 0;
i < s.length();
i++) |

for (int j = 0;

j < s.length{();
j++) o

retVal += helperFn (

s, i, J);

return retVal;

| A4

int hashFn (String s
if (s.length() %2
return 17;
else
return 42;

\

)

/

{

0)

Deterministic?

Efficient?/

Uniform?

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Attempt #1: hash(“cat”)

+ One idea: Assign each letter a number, use the first letter of
the word

ma=1,b=2,c=3,..,2=26
® hash(“cat”) ==

« What’s wrong with this approach?

" Other words start with c
+ hash(“chupacabra”) ==
® Can’t hash “=abc123”

YA UNIVERSITY of WASHINGTON

Attempt #2: hash(“cat”)

+ Next idea: Add together all the
letter codes, add new values for
symbols

® hash(“cat”) ==99+97 + 116 == 312
® hash(“=abc123”) == 505

« What’s wrong with this approach?

" Other words with the same letters
+ hash(“act”) ==97 +99 + 116 == 312

L12: Hashing; Hash Tables

CSE332, Spring 2021

33
34
35

37
38
39
40
41
42
43
44
45
46
47
48

s 4 o x— e~ -

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Lo NOUVA WN

e ~ VvV Il A~

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

VOZICrXR“YU= T MmMmoO @ P

81
82
83
84
85
86
87
88

90
91
92
93
94
95
96

>—~— T N<Xs<c-Hdwmo

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112

T o33 X" T ISwo "o oo oo

113
114
115
116
117
118
119
120
121
122
123
124
125
126

Y AN X s < Cc o0 O

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Attempt #3: hash(“cat”)

« Max possible value for English-only text (including
punctuation) is 126

< Another idea: Use 126 as our base to ensure unique values
across all possible strings

" hash(“cat”) ==99*126° + 97*126* + 116*1262 == 232055937
" hash(“act”) == 97*126° + 99*126* + 116*1262 == 232056187

« What’s wrong with this approach?
= Only handles English!

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Attempt #4: hash(“cat”)

« If we switch to another character set we can encode strings
such as “jHola!”

® The Unicode “Basic Multilingual Plane” contains 65,472 codepoints
+ hash(“cat”) == 99*65472° + 97*65472' + 116*654722 == 497,249,953,827

« What’s wrong with this approach?
® Qur range was [-2,147,483,648, 2,147,483,647]
- 497,249,953,827 % 2,147,483,647 == 1,181,231,370 == hash(“fi}”)

= We could use the modulus operator (%) to “wrap around”, but now
we’ve introduced the possibility of collisions

®= The BMP excludes most emoji (&), characters outside the “Han
Unification” (M8 vs® vs @ vs M), and much, much more

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

hash(“cat”): Lessons Learned

< Writing a hash function is hard!
= Sodon’'tdoit®©

<« Common hash algorithms include:
" MD5
= SHA-1
= SHA-256
- the only one that hasn’t been proven to be cryptographically insecure (yet)
= xxHash
= CityHash
= SuperFastHash

10

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Lecture Outline

« Hashing != Hash Tables
® Designing our own Hash Function
® Hashing Applications

+ Hash Tables
® Introduction
= Collision Avoidance Concepts
= Collision Resolution: Separate Chaining

11

Content Hashing: Applications (1 of 2)

+ Caching:

® You've downloaded a large video file. You want to know if a new
version is available. Rather than re-downloading the entire file,
compare your file’s hash value with the server’s hash value.

+ Cache-busting

" You want to ensure that browsers download the latest version of

your file, so you encode its hash in the filename:
checkoutPag -s

<+ File Verification / Error Checking:
= Same implementation

® Can be used to verify files on your machine, files spread across
multiple servers, ram and harddisk integrity (as parity), etc.

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

12

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Content Hashing: Applications (2 of 2)

& c @ gitlab.cs.washington.edu/cse373-20wi-students/hcta... ¥ "B g

+ Fingerprinting

By a OO I &

= Summarizing and identifying
statelessly

: bugfix . o
° Git hashes ! g Ha:mah Tang authored 3 weeks ago

- Youtube video id

master hctang + v History Q, Find file Web IDE & v

- Ad tracking: https://panopticlick.eff.org/

® Duplicate detection
- Two users upload the same meme to your image service
« Rsync duplicate detection
 YouTube ContentID

13

https://panopticlick.eff.org/

W UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Content Hashing: Defining a Salient Feature

« Hash function implementors can choose what’s salient:

" hash(“cat”) == hash(“CAT”) ??? C—A‘L C&{ ca_T

« What’s salient in detecting that an image or video is unique?

< What’s salient in determining that a user is unique?
= https://panopticlick.eff.org/

14

https://panopticlick.eff.org/

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Content Hashing vs Cryptographic Hashing

+ In addition to the properties of “regular” hash functions,
cryptographic hashes must also have the following properties:

®= |t is infeasible to find or generate two different inputs that generate
the same hash value

® Given a hash value, it is infeasible to calculate the original input
= Small changes to the input generate an uncorrelated hash values

<« Security is very hard to get right!

= If you don’t know what you’re doing, you’'re probably making it
worse

® Most algorithms, including MD5 and SHA-1, are not cryptographically
secure

15

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables

CSE332, Spring 2021

Content Hashing: Applications (2 of 3)

« Simple privacy and security

= Two companies want to determine what email addresses they have
in common without either of them leaking their entire lists

= Verifying the user typed the correct password without sending the
password between your server and their machine

= Secure random number generators

16

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Lecture Outline

« Hashing != Hash Tables
® Designing our own Hash Function
® Hashing Applications

+ Hash Tables
® Introduction
= Collision Avoidance Concepts
= Collision Resolution: Separate Chaining

17

W UNIVERSITY of WASHINGTON

L12: Hashing; Hash Tables

CSE332, Spring 2021

Review: Set and Dictionary Data Structures

> We’ve seen several implementations of the Set or Dictionary ADT

» Search Trees give good performance —log N — as long as the tree is
reasonably balanced

= Which doesn’t occur with sorted or mostly-sorted input

= So we studied two categories of search trees whose heights are
bounded:

- B-Trees (eg, B+ Trees) which grow from the root and are “mostly full” M-ary
trees

- Balanced BSTs (eg, AVL Trees) which grow from the leaves but rotate to stay
balanced

18

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables

Hash Table: Idea (1 of 2)

« Thanks to hashing, we can convert objects to

large integers

+ Hash tables can use these integers as array
indices

HashTable h;

h.add (“cat”, 100);

h.add (“snake”, 50);
h.add (“dog”, 200);

hashFunction (Y“cat”) == 2;
hashFunction (“snake”) == 2525393088;
hashFunction (“dog”) == 9752423;

9752423

2525393088

CSE332, Spring 2021

dog

snake

200

50

19

Y UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Hash Table: Idea (2 of 2)

« We can convert objects to large integers

+ Hash Tables use these integers as array indices
® To force our numbers to fit into a reasonably-sized

array, we’ll use the modulo operator (%) 2 cat 100
HashTable h; 3 snake 50 &
h.add (“cat”, 100);
h.add (“snake”, 50); 4 - -
h.add (“dog”, 200);

hashFunction (“cat”) == 2;

2 % 5 ==

hashFunction (“snake”) == 2525393088;
2525393088 % 5 ==

hashFunction (“dog”) == 9752423;
9752423 $ 5 ==

20

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

llII g.r ad e S Cop e gradescope.com/courses/256241

How should we handle the “bee” and “dog” collision

at index 3? 0 :)
A Somehow force “snake” and “dog” to share the ! i i
same index 2 cat 100

s. Overwrite “snake” with “dog” 3 snake 50

c. Keep “snake” and ignore “dog”

p. Put “dog” in a different index, and somehow
remember/find it later

e. Rebuild the hash table with a different size
and/or hash function

21

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Hash Table Components

HashTable h;
h.add (“cat”, 100); 1 - ,
h.add (“snake”, 50);

2 snake 100

hashFunction (“cat”) == 2;

a __ 3 | bee 50
2 % 5 ==
hashFunction (“snake”) == 4) .
2525393088;
2525393088 % 5 ==

+ Implementing a hash table requires the following components:

i . : ision? | resolved
key hashFunctlon int % table-index collision v.
table-index

22

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Lecture Outline

« Hashing != Hash Tables
® Designing our own Hash Function
® Hashing Applications

+ Hash Tables
® Introduction
= Collision Avoidance Concepts
= Collision Resolution: Separate Chaining

23

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Key Space vs Value Space vs Table Size

« There are m possible keys
= m typically large, even infinite

« A hash function will map those keys into a(n even) large(r) set
of integers

« We expect our table to have only n items
® nis much less than m (often written n << m)
" nis also much less than the range of a good hash function

« Many dictionaries have this property
® Database: All possible student names vs. students enrolled

= Al: All possible chess-board configurations vs. those considered by
the current player

24

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables

CSE332, Spring 2021

Collision Avoidance: Hash Function Input

« As usual: our examples use int or string keys, and omit values

+ If you have aggregate/structured objects with multiple fields,
you want to hash the “identifying fields” to avoid collisions

® Hashing just the first name = bad idea
® Hashing everything = too granular? Too slow?

class Person {
String first; String middle; String last;
Date birthdate;
Color hair;
IceCream favoriteFlavor;

}

« As we saw earlier, the hard part is deciding what to hash

= The how to hash is easy: we can usually use “canned” hash functions

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Collision Avoidance: Table Size (1 of 3)

« With “x % TableSize”, the number of collisions depends on
= the keys inserted (see previous slide)

= the quality of our hash function (don’t write your own)
" TableSize

« Larger table-size tends to help, but not always!
= Eg: 70, 24, 56, 43, 10 with TableSize =10 and TableSize =60

« Technique: Pick table size to be prime. Why?

= Real-life data tends to have a pattern

= “Multiples of 61” are probably less likely than “multiples of 60”
= Some collision resolution strategies do better with prime size

26

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables

Collision Avoidance: Table Size (2 of 3)

« Examples of why prime table sizes help:

«» |f TableSize is 60 and...

= Lots of keys hash to multiples of 5, we waste 80% of table
= Lots of keys hash to multiples of 10, we waste 90% of table
= Lots of keys hash to multiples of 2, we waste 50% of table

+ If TableSizeis 61...
= Collisions can still happen, but multiples of 5 will fill table
= Collisions can still happen, but multiples of 10 will fill table
= Collisions can still happen, but multiples of 2 will fill table

CSE332, Spring 2021

27

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Collision Avoidance: Table Size (3 of 3)

+ If x and y are “co-prime” (means ged (x,y) ==1), then
(a * x) $y== (b *x) Sy iff asy== Sy

+ Given table size y and key hashes as multiples of x, we’ll get a
decent distribution if x & y are co-prime

= So choose a TableSize that has no common factors with any
“likely pattern” x

= And choose — don’t implement — a decent hash function, darn it!

What is Hashing?

+ Hashing is taking data of arbitrary size and type and converting
it to an fixed-size integer (ie, an integer in a predefined range)

+ Running example: design a hash function that maps strings to
32-bit integers [-2147483648, 2147483647]

+ A good hash function exhibits the following properties:
* Deterministic: same input should generate the same output

= Efficient: should take a reasonable amount of time
jform: should spread inputs “evenly” over its output range

28

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Lecture Outline

« Hashing != Hash Tables
® Designing our own Hash Function
® Hashing Applications

+ Hash Tables
® Introduction
= Collision Avoidance Concepts
= Collision Resolution: Separate Chaining

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

29

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables

A Note on Terminology

CSE332, Spring 2021

i [li ? . resolved
key hashFunctlon int > table-index collision™ | .
table-index

« We and the book discuss collision resolution using these terms:

= “chaining” or “separate chaining”
= “open addressing”

« Very confusingly
= “open hashing” is a synonym for “separate chaining”
= “closed hashing” is a synonym for “open addressing”

30

YA UNIVERSITY of WASHINGTON

Separate Chaining Idea

<« All keys that map to the same table location are

keptin a list

" (a.k.a. a “chain” or “bucket”)

HashTable h;
h.add (100) ;
h.add (50) ;

h.add (200) ;

L12: Hashing; Hash Tables

hashFunction (100) == 2;
2 % 5 ==
hashFunction (50) == 2525393088;

2525393088 % 5 ==
hashFunction (200) == 9752423;
9752423 % 5 ==

CSE332, Spring 2021

100

\ 4

—> 50 > 200

31

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Separate Chaining: Add Example

0 — 10

« Add 10, 22, 107, 12, 42
= Let hashFunction(x) = x
" letTableSize =10 2

1 -

22 > 12 > 42

\ 4

7 = 107

hashFunction

% llision? resolved
key ee—— nt s— table-index e

table-index

32

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Separate Chaining: Find

<« You can probably figure this one out on your own

33

W UNIVERSITY of WASHINGTON

L12: Hashing; Hash Tables

Separate Chaining: Remove

«» Not too bad!
" Find in table
" Delete from bucket

« Example: remove 12

< What are the runtimes of
these operations (add,
find, remove)?

10

CSE332, Spring 2021

22

> 12

42

107

34

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Separate Chaining Runtime: Load Factor

«» The load factor A, of a hash table is

N < number of elements

A= _
TableSize

35

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Load Factor: Example

0 = 10 0 _>10

1 - 1 > 1 > 41 | 31 > 11
2 — 22 |12 > &2 2 —— 2333

3 - 3 > 3 | 473 (| 1033
4 - 4 -

5 - 5 = 05

6 - 6 ;

7 —{ 107 7 — 107

= 999 > 9

36

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Separate Chaining Runtime: Cases (1 of 2)

« The average number of elements per bucket is:

+ If we have a sequence of random adds/removes, then:
= What is the runtime of the next add? (D (\>
®= How many keys does each unsuccessful £ ind compare against? 4\
= How many keys does each successful £ind compare against? 7\/L
® What is the runtime of the next remove? /

+ If we have a sequence of worst-case adds/removes, then:
= What is the runtime of the next add? () CO
®= How many keys does each unsuccessful £ind compare against? /)
®" How many keys does each successful £ind compare against? ”/’L
= What is the runtime of the next remove? V)

37

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Separate Chaining Runtime: Cases (2 of 2)

- With random input, TableSize should be chosen carefully
= Runtime is a function of A, which itself is a function of TableSize

= |f you have a rough guess about the number of key/value pairs you’ll
have, choose a (prime!!) TableSize that keeps A reasonable

- With worst-case input
® You could argue that “TableSize doesn’t matter” but ...

i . l ision? | resolved
key hashFunctlon int % table-index collision V.
table-index

= Only happens with really bad luck or a bad hash function, so you
should follow the same principles above

38

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

Separate Chaining Runtime: Optimizations

+» Worst-case asymptotic runtime

= Generally not worth avoiding (e.g., with balanced trees in each bucket)
« Overhead of AVL tree, etc. not worth it for small or moderate n

= Better to keep # of items in each bucket small

+ So can we tweak some constant factors?
® Linked list vs. array vs. a hybrid of the two
" Move-to-front (part of Project 2)

= Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

+ A time-space trade-off...

= With separate chaining, a “good” A to aim foris 1

39

YA UNIVERSITY of WASHINGTON L12: Hashing; Hash Tables CSE332, Spring 2021

A Time vs. Space Optimization

(only makes a difference in constant factors)

0 — 10 o 10 -
1 - 1 . .
2 > 22 > 12 > 42 2 22 > 12 —» 42
3 - 3 . .
4 - 4 - -
5 - 5 - .
6 - 6 - .
7 » 107 7 107 -
8 - 8 . .

40

