
CSE332, Spring 2021L12: Hashing; Hash Tables

Set and Dictionary ADTs: Hash
Tables
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021L12: Hashing; Hash Tables

Announcements

❖ Next week is a quiz week!

▪ Released on Tuesday morning, due Thursday morning

▪ Practice Quiz #2 coming soon

2

CSE332, Spring 2021L12: Hashing; Hash Tables

Lecture Outline

❖ Hashing != Hash Tables

▪ Designing our own Hash Function

▪ Hashing Applications

❖ Hash Tables

▪ Introduction

▪ Collision Avoidance Concepts

▪ Collision Resolution: Separate Chaining

3

CSE332, Spring 2021L12: Hashing; Hash Tables

What is Hashing?

❖ Hashing is taking data of arbitrary size and type and converting
it to an fixed-size integer (ie, an integer in a predefined range)

❖ Running example: design a hash function that maps strings to
32-bit integers [-2147483648, 2147483647]

❖ A good hash function exhibits the following properties:

▪ Deterministic: same input should generate the same output

▪ Efficient: should take a reasonable amount of time

▪ Uniform: should spread inputs “evenly” over its output range

4

CSE332, Spring 2021L12: Hashing; Hash Tables

Bad Hashing

5

int hashFn(String s) {

return

Random.nextInt();

}

int hashFn(String s) {

int retVal = 0;

for (int i = 0;

i < s.length();

i++) {

for (int j = 0;

j < s.length();

j++) {

retVal += helperFn(

s, i, j);

}

}

return retVal;

}

int hashFn(String s) {

if (s.length()%2 == 0)

return 17;

else

return 42;

}

Deterministic? Efficient? Uniform?

CSE332, Spring 2021L12: Hashing; Hash Tables

Attempt #1: hash(“cat”)

❖ One idea: Assign each letter a number, use the first letter of
the word

▪ a = 1, b = 2, c = 3, …, z = 26

▪ hash(“cat”) == 3

❖ What’s wrong with this approach?

▪ Other words start with c

• hash(“chupacabra”) == 3

▪ Can’t hash “=abc123”

6

CSE332, Spring 2021L12: Hashing; Hash Tables

Attempt #2: hash(“cat”)

❖ Next idea: Add together all the
letter codes, add new values for
symbols

▪ hash(“cat”) == 99 + 97 + 116 == 312

▪ hash(“=abc123”) == 505

❖ What’s wrong with this approach?

▪ Other words with the same letters

• hash(“act”) == 97 + 99 + 116 == 312

7

CSE332, Spring 2021L12: Hashing; Hash Tables

Attempt #3: hash(“cat”)

❖ Max possible value for English-only text (including
punctuation) is 126

❖ Another idea: Use 126 as our base to ensure unique values
across all possible strings

▪ hash(“cat”) == 99*1260 + 97*1261 + 116*1262 == 232055937

▪ hash(“act”) == 97*1260 + 99*1261 + 116*1262 == 232056187

❖ What’s wrong with this approach?

▪ Only handles English!

8

CSE332, Spring 2021L12: Hashing; Hash Tables

Attempt #4: hash(“cat”)

❖ If we switch to another character set we can encode strings
such as “¡Hola!”

▪ The Unicode “Basic Multilingual Plane” contains 65,472 codepoints

❖ hash(“cat”) == 99*654720 + 97*654721 + 116*654722 == 497,249,953,827

❖ What’s wrong with this approach?

▪ Our range was [-2,147,483,648, 2,147,483,647]

• 497,249,953,827 % 2,147,483,647 == 1,181,231,370 == hash(“䙹”)

▪ We could use the modulus operator (%) to “wrap around”, but now
we’ve introduced the possibility of collisions

▪ The BMP excludes most emoji (🎺), characters outside the “Han
Unification” (兩 vs两 vs 両 vs 㒳), and much, much more

9

😢

CSE332, Spring 2021L12: Hashing; Hash Tables

hash(“cat”): Lessons Learned

❖ Writing a hash function is hard!

▪ So don’t do it ☺

❖ Common hash algorithms include:

▪ MD5

▪ SHA-1

▪ SHA-256

• the only one that hasn’t been proven to be cryptographically insecure (yet)

▪ xxHash

▪ CityHash

▪ SuperFastHash

10

CSE332, Spring 2021L12: Hashing; Hash Tables

Lecture Outline

❖ Hashing != Hash Tables

▪ Designing our own Hash Function

▪ Hashing Applications

❖ Hash Tables

▪ Introduction

▪ Collision Avoidance Concepts

▪ Collision Resolution: Separate Chaining

11

CSE332, Spring 2021L12: Hashing; Hash Tables

Content Hashing: Applications (1 of 2)

❖ Caching:

▪ You’ve downloaded a large video file. You want to know if a new
version is available. Rather than re-downloading the entire file,
compare your file’s hash value with the server’s hash value.

❖ Cache-busting

▪ You want to ensure that browsers download the latest version of
your file, so you encode its hash in the filename:
checkoutPage.thisfileshash.js

❖ File Verification / Error Checking:

▪ Same implementation

▪ Can be used to verify files on your machine, files spread across
multiple servers, ram and harddisk integrity (as parity), etc.

12

CSE332, Spring 2021L12: Hashing; Hash Tables

Content Hashing: Applications (2 of 2)

❖ Fingerprinting

▪ Summarizing and identifying
statelessly

• Git hashes

• Youtube video id

• Ad tracking: https://panopticlick.eff.org/

▪ Duplicate detection

• Two users upload the same meme to your image service

• Rsync duplicate detection

• YouTube ContentID

13

https://panopticlick.eff.org/

CSE332, Spring 2021L12: Hashing; Hash Tables

Content Hashing: Defining a Salient Feature

❖ Hash function implementors can choose what’s salient:

▪ hash(“cat”) == hash(“CAT”) ???

❖ What’s salient in detecting that an image or video is unique?

❖ What’s salient in determining that a user is unique?

▪ https://panopticlick.eff.org/
14

https://panopticlick.eff.org/

CSE332, Spring 2021L12: Hashing; Hash Tables

Content Hashing vs Cryptographic Hashing

❖ In addition to the properties of “regular” hash functions,
cryptographic hashes must also have the following properties:

▪ It is infeasible to find or generate two different inputs that generate
the same hash value

▪ Given a hash value, it is infeasible to calculate the original input

▪ Small changes to the input generate an uncorrelated hash values

❖ Security is very hard to get right!

▪ If you don’t know what you’re doing, you’re probably making it
worse

▪ Most algorithms, including MD5 and SHA-1, are not cryptographically
secure

15

CSE332, Spring 2021L12: Hashing; Hash Tables

Content Hashing: Applications (2 of 3)

❖ Simple privacy and security

▪ Two companies want to determine what email addresses they have
in common without either of them leaking their entire lists

▪ Verifying the user typed the correct password without sending the
password between your server and their machine

▪ Secure random number generators

16

CSE332, Spring 2021L12: Hashing; Hash Tables

Lecture Outline

❖ Hashing != Hash Tables

▪ Designing our own Hash Function

▪ Hashing Applications

❖ Hash Tables

▪ Introduction

▪ Collision Avoidance Concepts

▪ Collision Resolution: Separate Chaining

17

CSE332, Spring 2021L12: Hashing; Hash Tables

Review: Set and Dictionary Data Structures

❖ We’ve seen several implementations of the Set or Dictionary ADT

❖ Search Trees give good performance – log N – as long as the tree is
reasonably balanced

▪ Which doesn’t occur with sorted or mostly-sorted input

▪ So we studied two categories of search trees whose heights are
bounded:

• B-Trees (eg, B+ Trees) which grow from the root and are “mostly full” M-ary
trees

• Balanced BSTs (eg, AVL Trees) which grow from the leaves but rotate to stay
balanced

18

CSE332, Spring 2021L12: Hashing; Hash Tables

0 - -

1 - -

2 cat 100

3 - -

… - -

9752423 dog 200

… - -

2525393088 snake 50

… - -

Hash Table: Idea (1 of 2)

❖ Thanks to hashing, we can convert objects to
large integers

❖ Hash tables can use these integers as array
indices

19

HashTable h;

h.add(“cat”, 100);

h.add(“snake”, 50);

h.add(“dog”, 200);

hashFunction(“cat”) == 2;

hashFunction(“snake”) == 2525393088;

hashFunction(“dog”) == 9752423;

CSE332, Spring 2021L12: Hashing; Hash Tables

0 - -

1 - -

2 cat 100

3 snake 50

4 - -

Hash Table: Idea (2 of 2)

❖ We can convert objects to large integers

❖ Hash Tables use these integers as array indices

▪ To force our numbers to fit into a reasonably-sized
array, we’ll use the modulo operator (%)

20

HashTable h;

h.add(“cat”, 100);

h.add(“snake”, 50);

h.add(“dog”, 200);

hashFunction(“cat”) == 2;

2 % 5 == 2

hashFunction(“snake”) == 2525393088;

2525393088 % 5 == 3

hashFunction(“dog”) == 9752423;

9752423 % 5 == 3

🎺

CSE332, Spring 2021

gradescope.com/courses/256241

L12: Hashing; Hash Tables

0 - -

1 - -

2 cat 100

3 snake 50

4 - -

How should we handle the “bee” and “dog” collision
at index 3?

A. Somehow force “snake” and “dog” to share the
same index

B. Overwrite “snake” with “dog”

C. Keep “snake” and ignore “dog”

D. Put “dog” in a different index, and somehow
remember/find it later

E. Rebuild the hash table with a different size
and/or hash function

21

CSE332, Spring 2021L12: Hashing; Hash Tables

0 - -

1 - -

2 snake 100

3 bee 50

4 - -

Hash Table Components

❖ Implementing a hash table requires the following components:

22

HashTable h;

h.add(“cat”, 100);

h.add(“snake”, 50);

hashFunction(“cat”) == 2;

2 % 5 == 2

hashFunction(“snake”) ==

2525393088;

2525393088 % 5 == 3

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L12: Hashing; Hash Tables

Lecture Outline

❖ Hashing != Hash Tables

▪ Designing our own Hash Function

▪ Hashing Applications

❖ Hash Tables

▪ Introduction

▪ Collision Avoidance Concepts

▪ Collision Resolution: Separate Chaining

23

CSE332, Spring 2021L12: Hashing; Hash Tables

Key Space vs Value Space vs Table Size

❖ There are m possible keys

▪ m typically large, even infinite

❖ A hash function will map those keys into a(n even) large(r) set
of integers

❖ We expect our table to have only n items

▪ n is much less than m (often written n << m)

▪ n is also much less than the range of a good hash function

❖ Many dictionaries have this property

▪ Database: All possible student names vs. students enrolled

▪ AI: All possible chess-board configurations vs. those considered by
the current player

24

CSE332, Spring 2021L12: Hashing; Hash Tables

Collision Avoidance: Hash Function Input

❖ As usual: our examples use int or string keys, and omit values

❖ If you have aggregate/structured objects with multiple fields,
you want to hash the “identifying fields” to avoid collisions

▪ Hashing just the first name = bad idea

▪ Hashing everything = too granular? Too slow?

❖ As we saw earlier, the hard part is deciding what to hash

▪ The how to hash is easy: we can usually use “canned” hash functions

class Person {
String first; String middle; String last;
Date birthdate;
Color hair;
IceCream favoriteFlavor;

}

CSE332, Spring 2021L12: Hashing; Hash Tables

Collision Avoidance: Table Size (1 of 3)

❖ With “x % TableSize”, the number of collisions depends on

▪ the keys inserted (see previous slide)

▪ the quality of our hash function (don’t write your own)

▪ TableSize

❖ Larger table-size tends to help, but not always!

▪ Eg: 70, 24, 56, 43, 10 with TableSize = 10 and TableSize = 60

❖ Technique: Pick table size to be prime. Why?

▪ Real-life data tends to have a pattern

▪ “Multiples of 61” are probably less likely than “multiples of 60”

▪ Some collision resolution strategies do better with prime size

26

CSE332, Spring 2021L12: Hashing; Hash Tables

Collision Avoidance: Table Size (2 of 3)

❖ Examples of why prime table sizes help:

❖ If TableSize is 60 and…

▪ Lots of keys hash to multiples of 5, we waste 80% of table

▪ Lots of keys hash to multiples of 10, we waste 90% of table

▪ Lots of keys hash to multiples of 2, we waste 50% of table

❖ If TableSize is 61…

▪ Collisions can still happen, but multiples of 5 will fill table

▪ Collisions can still happen, but multiples of 10 will fill table

▪ Collisions can still happen, but multiples of 2 will fill table

27

CSE332, Spring 2021L12: Hashing; Hash Tables

Collision Avoidance: Table Size (3 of 3)

❖ If x and y are “co-prime” (means gcd(x,y)==1), then

(a * x) % y == (b * x) % y iff a % y == b % y

❖ Given table size y and key hashes as multiples of x, we’ll get a
decent distribution if x & y are co-prime

▪ So choose a TableSize that has no common factors with any
“likely pattern” x

▪ And choose – don’t implement – a decent hash function, darn it!

28

CSE332, Spring 2021L12: Hashing; Hash Tables

Lecture Outline

❖ Hashing != Hash Tables

▪ Designing our own Hash Function

▪ Hashing Applications

❖ Hash Tables

▪ Introduction

▪ Collision Avoidance Concepts

▪ Collision Resolution: Separate Chaining

29

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

CSE332, Spring 2021L12: Hashing; Hash Tables

A Note on Terminology

❖ We and the book discuss collision resolution using these terms:

▪ “chaining” or “separate chaining”

▪ “open addressing”

❖ Very confusingly

▪ “open hashing” is a synonym for “separate chaining”

▪ “closed hashing” is a synonym for “open addressing”

30

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining Idea

❖ All keys that map to the same table location are
kept in a list

▪ (a.k.a. a “chain” or “bucket”)

31

HashTable h;

h.add(100);

h.add(50);

h.add(200);

hashFunction(100) == 2;

2 % 5 == 2

hashFunction(50) == 2525393088;

2525393088 % 5 == 3

hashFunction(200) == 9752423;

9752423 % 5 == 3

0 -

1 -

2

3

4 -

100

50 200

CSE332, Spring 2021L12: Hashing; Hash Tables

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

Separate Chaining: Add Example

❖ Add 10, 22, 107, 12, 42

▪ Let hashFunction(x) = x

▪ Let TableSize = 10

32

10

421222

107

key int table-index
collision? resolved

table-index
hashFunction %

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining: Find

❖ You can probably figure this one out on your own

33

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining: Remove

❖ Not too bad!

▪ Find in table

▪ Delete from bucket

❖ Example: remove 12

❖ What are the runtimes of
these operations (add,
find, remove)?

34

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10

421222

107

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining Runtime: Load Factor

❖ The load factor , of a hash table is

35

N

TableSize
 =

 number of elements

CSE332, Spring 2021L12: Hashing; Hash Tables

Load Factor: Example

36

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10

31411

107

3233

10334733

11

95

9999

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10

421222

107

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining Runtime: Cases (1 of 2)

❖ The average number of elements per bucket is:

❖ If we have a sequence of random adds/removes, then:

▪ What is the runtime of the next add?

▪ How many keys does each unsuccessful find compare against?

▪ How many keys does each successful find compare against?

▪ What is the runtime of the next remove?

❖ If we have a sequence of worst-case adds/removes, then:

▪ What is the runtime of the next add?

▪ How many keys does each unsuccessful find compare against?

▪ How many keys does each successful find compare against?

▪ What is the runtime of the next remove?
37

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining Runtime: Cases (2 of 2)

❖ With random input, TableSize should be chosen carefully

▪ Runtime is a function of , which itself is a function of TableSize

▪ If you have a rough guess about the number of key/value pairs you’ll
have, choose a (prime!!) TableSize that keeps  reasonable

❖ With worst-case input

▪ You could argue that “TableSize doesn’t matter” but …

▪ Only happens with really bad luck or a bad hash function, so you
should follow the same principles above

38

hashFunction
key int table-index

collision? resolved
table-index

%

CSE332, Spring 2021L12: Hashing; Hash Tables

Separate Chaining Runtime: Optimizations

❖ Worst-case asymptotic runtime

▪ Generally not worth avoiding (e.g., with balanced trees in each bucket)

• Overhead of AVL tree, etc. not worth it for small or moderate n

▪ Better to keep # of items in each bucket small

❖ So can we tweak some constant factors?

▪ Linked list vs. array vs. a hybrid of the two

▪ Move-to-front (part of Project 2)

▪ Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

• A time-space trade-off…

▪ With separate chaining, a “good”  to aim for is 1

39

CSE332, Spring 2021L12: Hashing; Hash Tables

A Time vs. Space Optimization
(only makes a difference in constant factors)

40

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10

421222

107

0 10 -

1 - -

2 22 -

3 - -

4 - -

5 - -

6 - -

7 107 -

8 - -

9 - -

4212

