YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B-Trees (cont)
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

W UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

« In a B-tree, what is M? What is L? How does it relate to the two node
types?

« What constraints are placed on the keys in the subtree rooted at the 5,
and the keys on the subtree rooted at the 6?

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Announcements

+ Expected turnaround time for quiz and project grading: ~1.5w

« We are not moving the p2 deadlines
= .. which includes the checkpoint deadline, tomorrow!

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.)

Lecture Outline

« B-Trees
= Review and B+ Tree Add
" B+ Tree Remove
" Wrapup

+ Balanced Tree Wrapup

CSE332, Spring 2021

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B-Tree Reminder: “Just Another Dictionary”

+ Keep in mind how we got here:
= Large data sets won’t fit entirely in memory
= Disk access is sl000000000000000000WWWWWWWWW
® Design a search tree so we do one disk access per node

® Then, our goal becomes: keep this search tree as shallow as possible
¢ ... Which minimizes disk accesses

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Decision #1: M-ary Search Tree

« A search tree with branching factor M (instead of 2)
® Each node has a sorted array of M-1 children: Node []

= Together, M-1 children define the M ranges that we search through

s

xX<3 3<x<7 7<x<21 21<x<84 84<x

= Choose M to fit into a disk block: only 1 disk access for entire array!

L11: B-Trees (cont.) CSE332, Spring 2021

YA UNIVERSITY of WASHINGTON

Decision #2: Key-only Internal Nodes

+ A Dictionary ADT stores key->value pairs; where should we
store a key’s value?

. 9: Banana
+ BST stores value alongside the key at /\
every node 5: Cantaloupe 17: Apple
= Loads entire node even if we are “passing /‘\ '\
through” to find a different key - Eiderberry | [5: Appre 31 Fig
+ B-Tree only stores keys in internal nodes; | 9
values live in special key/value leaves ;
- 5 '; 17
,/' 1 >
41 || 8 31 oo
—"’— \Nx

P A - o \ 4 N ~
9: Elderberry || 5: Canteloupe || 8: Apple 9: Banana 17: Apple | 31: Fig

W UNIVERSITY of WASHINGTON

L11: B-Trees (cont.)

CSE332, Spring 2021

Add Example (1 of 4)

" -—h1 hy
18 3

3 \& Vig 2, 18 VMg 3 ¥ 18 hg|| 32,
14 4,1 | 30} [2992 g | |30 iy 298 g 30

~

S 36\,
‘\ I
| | l p 32 32 l
3(0&\. Split the leaf
me@\d{\ O]C

e mm&\@% salues mméﬁb

Add 32, 36, 15, 16, 12, 40
M=3, L=3

W UNIVERSITY of WASHINGTON

Add Example (2 of 4)

18 32

14 30 36 | add(15)

L11: B-Trees (cont.)

CSE332, Spring 2021

18 32
3 18 32 3 18 32
14 || 30 36 | add(i6) 14 || 30 36
> Damm——
15 e 1 15
16—
"""""" m@d\m\
-
o | 18 32
15
Split the leaf again, but ...
now the parent is full!
3 15 18 32
14 16 30 36

Add 32,3615, 16, 12, 40
M=3, L=3

W UNIVERSITY of WASHINGTON

Add ExarynhggzL

L11: B-Trees (cont.)

(3 of 4)

| ! 18 32
015
3 15 18 32
14 16 30 36

[Add 3236;155-16, 12, 40

M=3, L=3

]

OJ\AC,

CSE332, Spring 2021

<IN

15 l 32

15 18 32

14

16 30 36

Split the parent (in this case, the root)

10

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Add Example (4 of 4)
18 . 18 .
15 l 32 l ! 15 l 32

3 15 18 32 add(12) 15 18 32
add(40)

14 16 30 36 | —> | 12 16 30 36

14 40

Add 32,36,-15;16;-12, 40
M=3, L=3

11

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Add Algorithm (1 of 3)

1. Add the value to its leaf in key-sorted order

2. If the leaf now has L+1 items, overflow:

= Split the leaf into two leaves:
Original leaf with [£/2] smaller items
New leaf with | LL/2]=[L/2] larger items
= Attach the new leaf to its parent

Add a new key (smallest key in new leaf) to parent in sorted order

If step (2) caused the parent to have M+1 children, ...

12

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Add Algorithm (2 of 3)

3. If step (2) caused an internal node to have M+1 children

= Split the internal node into two nodes
Original node with |—(M+1)/2—| smaller keys
New node with | (M+1)/2]=] M/2] larger keys
= Attach the new internal node to its parent
Move the median key (smallest key in new node) to parent in sorted order

= |fstep (3) caused the parent to have M+1 children, repeat step (3)
on the parent

4. If step (3) caused the root to have M+1 children

= Split the old root into two internal nodes, then add them to a
newly-created root as described in step (3)

= This is the only case that increases the tree height! &——— O&

13

Y UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Add Algorithm (3 of 3)

+ Note the similarities between the overflow steps:

Split the leaf into two leaves: Split the internal node into two leaves:
* Original leaf with |—(L+1)/2—| * Original node with |—(M+1)/2—|
smaller items smaller items
e New leafwith | (L+1)/2]=[L/2] « New node with | (M+1)/2]=[m/2]
larger items larger items
Attach the new leaf to its parent Attach the new internal node to its parent
° new key (smallest key in . the median key (smallest key in
ew leaf) to the parent in sorted new node) to the parent in sorted
order order

<« But also the difference when overflowing a root:

Split the root into two internal nodes:

* Left node with |—(M+1)/2—| smaller items

* Right node with |_(M+1)/2J = |—M/2—| larger items

Attach the internal nodes to the new root

* Move the median key (smallest key in new right node) to the root

14

W UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

« When splitting nodes in a B+ Tree, why do we need to copy keys out of
leaves but move keys out of internal nodes?

15

W UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Add: Efficiency (1 of 2)

- ned bec of rodes Yrovergesd
A (ko e h@%w>

« Find correct leaf:

« Add (key, value) palr to leaf: O — L D’\>€(03“\<5"\S

= Why? ﬁm]ar k VAUG& ng wneer
<« Possibly split leaf: O(L) . = o\dewéﬂb"\s

= Why? Copyy Heudypues o ot lead
+ Possibly split parents all the way up to root: O(M log,, n)

= Why? @ @mke\&\/@r

+ Total: O(L + M 1og,, n) ;; ctﬁﬁ Vc’js ‘n e \Jr néble,
Q052H\03H0 + L + _i | = 103 Mn>

W
fad add ‘&"Y' 3\31@55 SPH potery

16

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Add: Efficiency (2 of 2)

+ Worst-case runtime is O(L + M 1og,, n)!

But the worst-case isn’t that common!

/7
0.0

= Splits are uncommon
 Only required when a node is full
« M and L are likely to be large and, after a split, nodes will be half empty

= Splitting the root is extremely rare <—— b}

= Remember that our goal is minimizing disk accesses! Disk accesses
are still bound by O(1og,, n)

17

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Lecture Outline

« B-Trees
= Review and B+ Tree Add
" B+ Tree Remove
" Wrapup

+ Balanced Tree Wrapup

18

W UNIVERSITY of WASHINGTON

Remove Example:

+ Remove 32, 15, 16, 14, 18
+» M=3, L=3

= Min #children =2

" Min #items = 2

L11: B-Trees (cont.)

18

!15

3 15
12 16
14

CSE332, Spring 2021

32

40

18

32

40

30

36

45

38

19

W UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

+» Remove 32, 15

+» M=3, L=3
® Min #children =2
"= Min #items =2

15 40

12 16 30 36 45

14 38

20

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (1 of 8)

I
15 l 32 40

3 15 18 32 40
12 16 30 36 || 45 18 I
14 38
15 l 36 40
remove(32)
N 3 15 18 36 40

12 16 30 38 45
[Remove 32,15, 16, 14, 18] 14

M=3, L=3; min children=2, min items=2

21

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (2 of 8)

I
15 l 36 40

Adopt an item from a

3 15 18 36 40 neighbor leaf
12 16 30 38 45 18 I
14
l 36 40
remove(15) 3 18 36 20
12 16 30 38 45

M=3, L=3; min children=2, min items=2

[Remove 32-15, 16, 14, 18] 14

22

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (3 of 8)

I
14 l 36 40

3 14 18 36 40 Merge with a neighbor leaf
12 16 30 38 || 45 18 I
14 l 36 40
)
remove(16)
— % /14\5\]\g 36 40
12\ / 30\ 38 45
Remove 32,-15--16, 14, 18
M=3, L=3; min children=2, min items=2 y =3 \
< Wiy 184k =

CSE332, Spring 2021

Remove Example: Answer (4 of 8)

1N
\ /
3 /1\8 /éé\ 40\ Adopt from a neighbor node
3& 38\ /45 36 I

[dos/BE

% 4 <3 Botii g0

— [Al [

12\ /30

.
o

<% 18¢xv<3 o o<y 240 ‘DﬁK 2

Remove 32,-15--16, 14, 18 / 14
M=3, L=3; min children=2, min items=2

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (5 of 8)

I
N AN B

12 30 38 45 36 I
14
18 l 40

remove(14)
— > 3 18 36 40

12 30 38 45

M=3, L=3; min children=2, min items=2

[Remove 3215-16-14, 18]

25

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (6 of 8)

<IN
‘N AN-N B
Merge with a neighbor leaf

12 30 38 45 36 I
AN-N B

remove(18)
_—> 3 36 40

12 30 38 45

M=3, L=3; min children=2, min items=2

[Remove 32,-1516,14-18]

26

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (7 of 8)

<R
BN-N B
36 40 Merge with a neighbor node

1 s || a5 H B

30

36 40

NG 3 || 36 || 40
12 || 38 || 45

[Remove 3215-16314-18] 30

M=3, L=3; min children=2, min items=2

27

W UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Remove Example: Answer (8 of 8)

36 40

12 38 45
Delete the old root

30

36 40

NG 3 || 36 || 40
12 || 38 || 45

[Remove 3215-16314-18] 30

M=3, L=3; min children=2, min items=2

28

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Remove Algorithm (1 of 3)

1. Remove the item from its leaf

2. If the leaf now has |_L/2_|—1, underflow:
®= |faneighbor has > |_L/2_| items, adopt
Move parent’s key down, and neighbor’s adjacent key up

= Else, merge leaf with neighbor
Guaranteed to have a legal number of items
Remove parent’s key and move grandparent’s key down
Parent now has one less leaf

If step (2) caused the parent to have [M/2]-1 children, ...

29

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Remove Algorithm (2 of 3)

3. If step (2) caused an internal node to have [M/2]-1 children
®= |faneighbor has > [M/2] keys, adopt and update parent
Move parent’s key down, and neighbor’s adjacent key up

= Else, merge with neighbor node
Guaranteed to have a legal number of keys
Remove parent’s key and move grandparent’s key down
Parent now has one less node, may need to continue up the tree

. If step (3) caused the root to have have [M/2]-1 children

"= |froot went from 2 children to 1 child, move key down and make
the child the new root

® This is the only case that decreases the tree height!

30

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.)

B+ Tree Remove Algorithm (3 of 3)

<+ Again, note the similarities between the underflow steps:

CSE332, Spring 2021

If a neighbor leaf has > [1/2]items,
adopt:
Move parent’s key down, and
neighbor’s adjacent key up
Else merge leaf with neighbor:
Guaranteed to have a legal
number of items
Remove parent’s key and move
grandparent’s key down
Parent now has one less leaf

If a neighbor node has > |_M/2_| items,
adopt:
Move parent’s key down, and
neighbor’s adjacent key up
Else merge node with neighbor:
Guaranteed to have a legal number of
keys
Remove parent’s key and move
grandparent’s key down
Parent now has one less leaf

31

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Remove: Efficiency (1 of 2)

+ Find correct leaf: O(1og, M 1log,, n)

< Remove item from leaf: O(L)

*why? 3 L) o e Mhole

+ Possibly adopt from or merge with neighbor leaf: O(L)
= Why? Copy el \{\\1:0(5 velees wito Phig G&Pf

<« Possibly a opt or merge parent node up to root: O(M log,, n)

+ Total: O(L + M logyn) Eome o5 0.0d
(3M\%MW+L’V% +ﬂ‘<>jz>

\ea k/v o JVM@ e
5 ey i u

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Tree Remove: Efficiency (2 of 2)

+ Worst-case runtime is O(L + M 1og,, n)!

But the worst-case isn’t that common!

/7
0.0

" Merges are uncommon

+ Only required when a node is half empty
- M and L are likely large and, after a merge, nodes will be completely full

® Shrinking the height by removing the root is extremely rare

= Remember that our goal is minimizing disk accesses! Disk accesses
are still bound by O(1og,, n)

33

W UNIVERSITY of WASHINGTON L11: B-Trees (cont.)

Lecture Outline

« B-Trees
= Review and B+ Tree Add
" B+ Tree Remove
" Wrapup

+ Balanced Tree Wrapup

« Hashing
® Designing Our Own Hash Function
® Hashing Applications

CSE332, Spring 2021

34

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Trees in Java?

« For most of our data structures, we encourage writing high-
level, reusable code. Eg, using Java generics in our projects

« It’s a bad idea for B+ Trees, however

® Java can do balanced trees! It can even do other B-Trees, such as the
2-3 tree (which resembles a B+ Tree with M=3)

= Java wasn’t designed for things like managing disk accesses, which is
the whole point of B+ Trees

" The key issue is Java’s extra levels of indirection...

35

YA UNIVERSITY of WASHINGTON

L11: B-Trees (cont.)

Possible Java Implementation: Code

Even if we assume int keys, Java’s data representation doesn’t

match what we want out of a B+ Tree

CSE332, Spring 2021

class BTreeNode<E> {
sta ilc final int M
%) keys
BRTr eNode<E chil
}

class BTreelLeaf<E> {

stekic final int
1 keys

E items =
i

numltems = H

int numChildren =

// 1nternal node
— 1285

dren

// leaf node

32;
int[L-1];
Object[L];

M] ;

36

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Possible Java Implementation: Box-and-Arrows

BTreeNode (internal node)

\ 12 | 20 | 45 .. | (array of M-1 ints)

/ , l \ (ag?ryé;tln;es;s to
kevs [— / / l l &
children —
numChildren 70
| \ .. | (array of L refs to item objects)

BTreeLeaf (leaf node)

\

Item objects not in contiguous memory

y

7

items

It . . “” ” . 1 ;
pumLtemns 20 All the red references indicate “unnecessary” indirection that

might be avoided in another programming language!

37

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

B+ Trees in Java: The Moral of the Story

« The whole idea behind B+ trees was to keep related data in
contiguous memory

<« But this runs counter to the code and patterns Java encourages

= Java’s implementation of generic, reusable code is not want you
want for your performance-critical web-index

« Other languages (e.g., C++) have better support for “flattening
objects into arrays” in a generic, reusable way

« Levels of indirection matter!

38

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Lecture Outline

« B-Trees
= Review and B+ Tree Add
" B+ Tree Remove
" Wrapup

+ Balanced Tree Wrapup

39

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Summary: Search Trees (1 of 2)

+ Binary Search Trees make good dictionaries because they
implement £ind, add, and remove as well as a number of
useful operations such as flattenIntoSortedList or
successor

® Essential and beautiful computer science

« Balanced search trees guarantee logarithmic-time operations
= ... if you can maintain balance within the time bound

= AVL trees maintain balance by tracking height and allowing all
children to differ in height by at most 1

" B trees maintain balance by keeping nodes at least half full and all
leaves at same height

40

YA UNIVERSITY of WASHINGTON L11: B-Trees (cont.) CSE332, Spring 2021

Summary: Search Trees (2 of 2)

«» Most balanced BSTs are Red-Black trees

= No extra space needed: store the (boolean) color in the pointer or as
reversed children

= 1.39x taller than equivalent AVL tree, but still logarithmic in height
® Deletes are amortized constant
= Used in linux kernel (scheduler, epoll), C++ and Java libraries

+ But difficult to reason about (especially in a lecture), so we use
AVL and B+ trees to illustrate the ideas and techniques

= Also interesting are splay trees: self-adjusting; amortized guarantee;
no extra space for height information

« Next up: dictionaries that don’t rely on trees at all!

41

