B-Trees (cont) CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

Ill gradescope

gradescope.com/courses/256241

- In a B-tree, what is M? What is L? How does it relate to the two node types?
- What constraints are placed on the keys in the subtree rooted at the 5, and the keys on the subtree rooted at the 6?

Announcements

- Expected turnaround time for quiz and project grading: ~1.5w
- We are not moving the p2 deadlines
 - ... which includes the checkpoint deadline, tomorrow!

Lecture Outline

- ✤ B-Trees
 - Review and B+ Tree Add
 - B+ Tree Remove
 - Wrapup
- Balanced Tree Wrapup

B-Tree Reminder: "Just Another Dictionary"

- Keep in mind how we got here:
 - Large data sets won't fit entirely in memory

 - Design a search tree so we do one disk access per node
 - Then, our goal becomes: keep this search tree as shallow as possible
 - ... which minimizes disk accesses

Reminder: a dictionary maps *keys* to *values*; an *item* or *data* refers to the (key, value) pair

Decision #1: M-ary Search Tree

- A search tree with branching factor M (instead of 2)
 - Each node has a sorted array of M-1 children: Node []

Together, M-1 children define the M ranges that we search through

Choose M to fit into a disk block: only 1 disk access for entire array!

Decision #2: Key-only Internal Nodes

A Dictionary ADT stores key->value pairs; where should we store a key's <u>value</u>?

Add Example (1 of 4)

Add 32, 36, 15, 16, 12, 40 M=3, L=3

Add Example (2 of 4)

Add Example (3 of 4)

Split the parent (in this case, the root)

Add 32, 36, 15, 16, 12, 40 M=3, L=3

Add Example (4 of 4)

B+ Tree Add Algorithm (1 of 3)

- 1. Add the value to its **leaf** in key-sorted order
- 2. If the leaf now has L+1 items, overflow:
 - Split the leaf into two leaves:
 - Original leaf with **[***L***/**2**]** smaller items
 - New leaf with $\lfloor L/2 \rfloor = \lceil L/2 \rceil$ larger items
 - Attach the new leaf to its parent
 - Add a new key (smallest key in new leaf) to parent in sorted order

If step (2) caused the parent to have M+1 children, ...

B+ Tree Add Algorithm (2 of 3)

- 3. If step (2) caused an **internal node** to have *M*+1 children
 - Split the internal node into two nodes
 - Original **node** with **(***M***+1)/2** smaller keys
 - New node with $\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil$ larger keys
 - Attach the new **internal node** to its parent
 - Move the median key (smallest key in new node) to parent in sorted order
 - If step (3) caused the parent to have M+1 children, repeat step (3) on the parent
- 4. If step (3) caused the **root** to have *M*+1 children
 - Split the old root into two internal nodes, then add them to a newly-created root as described in step (3)
 - This is the only case that increases the tree height!

B+ Tree Add Algorithm (3 of 3)

Note the similarities between the overflow steps:

But also the difference when overflowing a root:

Split the **root** into two **internal nodes**:

- Left **node** with [(*M*+1)/2] smaller items
- Right node with $\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil$ larger items Attach the internal nodes to the new root
- <u>Move</u> the median key (smallest key in new right node) to the root

Ill gradescope

gradescope.com/courses/256241

When splitting nodes in a B+ Tree, why do we need to copy keys out of leaves but move keys out of internal nodes?

B+ Tree Add: Efficiency (1 of 2) Per-nede binaugsegech * Find correct leaf: O(log₂ Mlog_M n) Add (key, value) pair to leaf: O(L) − L operations • Why? Shift keys/values for insert * Possibly split leaf: O(L) - - - Operations · Why? Copy Keysvalues into split leaf * Possibly split parents all the way up to root: $O(M \log_M n)$ (logmn) tree height Why? keys in each split node * Total: $O(L + M \log_M n) \checkmark$ log2Mlogmn + L + Zlog Hn split parents add to leaf split's

B+ Tree Add: Efficiency (2 of 2)

- Worst-case runtime is $O(L + M \log_M n)!$
- But the worst-case isn't that common!
 - Splits are uncommon
 - Only required when a node is <u>full</u>
 - M and L are likely to be large and, after a split, nodes will be half empty
 - Splitting the root is extremely rare
 - Remember that our goal is minimizing disk accesses! Disk accesses are still bound by O(log_M n)

Lecture Outline

- ✤ B-Trees
 - Review and B+ Tree Add
 - B+ Tree Remove
 - Wrapup
- Balanced Tree Wrapup

Remove Example:

- * Remove 32, 15, 16, 14, 18
- * M=3, L=3
 - Min #children = 2
 - Min #items = 2

L11: B-Trees (cont.)

CSE332, Spring 2021

gradescope

Remove 32, 15

- M=3, L=3
 - Min #children = 2
 - Min #items = 2

gradescope.com/courses/256241

Remove Example: Answer (1 of 8)

Adopt an item from a

neighbor leaf

Remove Example: Answer (2 of 8)

Remove Example: Answer (3 of 8)

Merge with a neighbor leaf

Remove Example: Answer (4 of 8)

Remove Example: Answer (5 of 8)

Remove Example: Answer (6 of 8)

Merge with a neighbor leaf

Remove Example: Answer (7 of 8)

Merge with a neighbor **node**

Remove Example: Answer (8 of 8)

Remove 32, 15, 16, 14, 18

M=3, L=3; min children=2, min items=2

Delete the old root

B+ Tree Remove Algorithm (1 of 3)

- 1. Remove the item from its leaf
- 2. If the leaf now has $\lfloor L/2 \rfloor 1$, underflow:
 - If a neighbor has $> \lfloor L/2 \rfloor$ items, adopt
 - Move parent's key down, and neighbor's adjacent key up
 - Else, merge leaf with neighbor
 - Guaranteed to have a legal number of items
 - Remove parent's key and move grandparent's key down
 - Parent now has one less leaf

If step (2) caused the parent to have $\lceil M/2 \rceil - 1$ children, ...

B+ Tree Remove Algorithm (2 of 3)

- If step (2) caused an **internal node** to have $\lceil M/2 \rceil 1$ children
 - If a neighbor has $> \lceil M/2 \rceil$ keys, *adopt* and update parent
 - Move parent's key down, and neighbor's adjacent key up
 - Else, merge with neighbor node
 - Guaranteed to have a legal number of keys
 - Remove parent's key and move grandparent's key down
 - Parent now has one less node, may need to continue up the tree
- 4. If step (3) caused the **root** to have have $\lceil M/2 \rceil 1$ children
 - If root went from 2 children to 1 child, move key down and make the child the new root
 - This is the only case that decreases the tree height!

B+ Tree Remove Algorithm (3 of 3)

Again, note the similarities between the underflow steps:

If a neighbor leaf has > [L/2] items,	If a neighbor node has > [M/2] items,
adopt:	adopt:
Move parent's key down, and	Move parent's key down, and
neighbor's adjacent key up	neighbor's adjacent key up
Else merge leaf with neighbor:	Else merge node with neighbor:
Guaranteed to have a legal	Guaranteed to have a legal number of
number of items	keys
Remove parent's key and move	Remove parent's key and move
grandparent's key down	grandparent's key down
Parent now has one less leaf	Parent now has one less leaf

B+ Tree Remove: Efficiency (1 of 2)

- * Find correct leaf: $O(\log_2 M \log_M n)$
- Remove item from leaf: O(L)
 - " Why? Shift K/v over the "hole"
- Possibly adopt from or merge with neighbor leaf: O(L)
 - · Why? Copy neighbor's values into this leaf
- * Possibly adopt or merge **parent node** up to **root**: $O(M \log_M n)$
 - Why? $\frac{M}{Z} \log_2 M$
- * Total: $O(L + M \log_M n)$ Same as add \checkmark

(log2M log_M n + L + $\frac{L}{Z}$ + $\frac{M}{Z} log_Z M$) find kaf k/v copies adopt/merge up to root

B+ Tree Remove: Efficiency (2 of 2)

- Worst-case runtime is $O(L + M \log_M n)!$
- But the worst-case isn't that common!
 - Merges are uncommon
 - Only required when a node is <u>half empty</u> (half full?)
 - M and L are likely large and, after a merge, nodes will be completely full
 - Shrinking the height by removing the root is extremely rare
 - Remember that our goal is minimizing disk accesses! Disk accesses are still bound by O(log_M n)

Lecture Outline

- ✤ B-Trees
 - Review and B+ Tree Add
 - B+ Tree Remove
 - Wrapup
- Balanced Tree Wrapup
- Hashing
 - Designing Our Own Hash Function
 - Hashing Applications

B+ Trees in Java?

- For most of our data structures, we encourage writing highlevel, reusable code. Eg, using Java generics in our projects
- It's a bad idea for B+ Trees, however
 - Java can do balanced trees! It can even do other B-Trees, such as the 2-3 tree (which resembles a B+ Tree with M=3)
 - Java wasn't designed for things like managing disk accesses, which is the whole point of B+ Trees
 - The key issue is Java's extra *levels of indirection*...

Possible Java Implementation: Code

Even if we assume int keys, Java's data representation doesn't match what we want out of a B+ Tree

Possible Java Implementation: Box-and-Arrows

B+ Trees in Java: The Moral of the Story

- The whole idea behind B+ trees was to keep related data in contiguous memory
- But this runs counter to the code and patterns Java encourages
 - Java's implementation of generic, reusable code is not want you want for your performance-critical web-index
- Other languages (e.g., C++) have better support for "flattening objects into arrays" in a generic, reusable way
- Levels of indirection matter!

Lecture Outline

- ✤ B-Trees
 - Review and B+ Tree Add
 - B+ Tree Remove
 - Wrapup
- * Balanced Tree Wrapup

Summary: Search Trees (1 of 2)

- Binary Search Trees make good dictionaries because they implement find, add, and remove as well as a number of useful operations such as flattenIntoSortedList or successor
 - Essential and beautiful computer science
- Balanced search trees guarantee logarithmic-time operations
 - ... if you can maintain balance within the time bound
 - AVL trees maintain balance by tracking height and allowing all children to differ in height by at most 1
 - B trees maintain balance by keeping nodes at least half full and all leaves at same height

Summary: Search Trees (2 of 2)

- Most balanced BSTs are Red-Black trees
 - No extra space needed: store the (boolean) color in the pointer or as reversed children
 - 1.39x taller than equivalent AVL tree, but still logarithmic in height
 - Deletes are amortized constant
 - Used in linux kernel (scheduler, epoll), C++ and Java libraries
- But difficult to reason about (especially in a lecture), so we use
 AVL and B+ trees to illustrate the *ideas* and *techniques*
 - Also interesting are splay trees: self-adjusting; amortized guarantee; no extra space for height information
- Next up: dictionaries that don't rely on trees at all!