
CSE332, Spring 2021L11: B-Trees (cont.)

B-Trees (cont)
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar



CSE332, Spring 2021

gradescope.com/courses/256241

L11: B-Trees (cont.)

❖ In a B-tree, what is M?  What is L?  How does it relate to the two node 
types?

❖ What constraints are placed on the keys in the subtree rooted at the 5, 
and the keys on the subtree rooted at the 6?

2

9

5 17

6 311



CSE332, Spring 2021L11: B-Trees (cont.)

Announcements

❖ Expected turnaround time for quiz and project grading: ~1.5w

❖ We are not moving the p2 deadlines

▪ … which includes the checkpoint deadline, tomorrow!

3



CSE332, Spring 2021L11: B-Trees (cont.)

Lecture Outline

❖ B-Trees

▪ Review and B+ Tree Add

▪ B+ Tree Remove

▪ Wrapup

❖ Balanced Tree Wrapup

4



CSE332, Spring 2021L11: B-Trees (cont.)

B-Tree Reminder: “Just Another Dictionary”

❖ Keep in mind how we got here:

▪ Large data sets won’t fit entirely in memory

▪ Disk access is sloooooooooooooooooowwwwwwwww

▪ Design a search tree so we do one disk access per node

▪ Then, our goal becomes: keep this search tree as shallow as possible

• … which minimizes disk accesses

5

Reminder: a dictionary maps keys to values; 
an item or data refers to the (key, value) pair



CSE332, Spring 2021L11: B-Trees (cont.)

❖ A search tree with branching factor M (instead of 2)

▪ Each node has a sorted array of M-1 children: Node[]

▪ Together, M-1 children define the M ranges that we search through

▪ Choose M to fit into a disk block: only 1 disk access for entire array!

Decision #1: M-ary Search Tree

6

for M = 5

3 7 21 84

21x<847x<213x<7x<3 84x

for M = 5



CSE332, Spring 2021L11: B-Trees (cont.)

9

5 17

311

9: Elderberry 5: Canteloupe 8: Apple 9: Banana 17: Apple 31: Fig

8

Decision #2: Key-only Internal Nodes

❖ A Dictionary ADT stores key->value pairs; where should we 
store a key’s value?

❖ BST stores value alongside the key at
every node

▪ Loads entire node even if we are “passing
through” to find a different key

❖ B-Tree only stores keys in internal nodes;
values live in special key/value leaves

7

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry



CSE332, Spring 2021L11: B-Trees (cont.)

Add Example (1 of 4)

8

Split the leaf

add(32)

Add 32, 36, 15, 16, 12, 40
M=3, L=3

3

14

18

30

18

3

14

18

30

32

18

add(36)

3

14

18

30

18 32

32

36



CSE332, Spring 2021L11: B-Trees (cont.)

Add Example (2 of 4)

9

Split the leaf again, but 
now the parent is full!

add(15)

Add 32, 36, 15, 16, 12, 40
M=3, L=3

3

14

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36 add(16)

3

14

15

18

30

18 32

32

36

16

15

16

18

30

18 32

32

36

15

3

14



CSE332, Spring 2021L11: B-Trees (cont.)

Add Example (3 of 4)

10

Split the parent (in this case, the root)

Add 32, 36, 15, 16, 12, 40
M=3, L=3

15

16

18

30

18 32

32

36

15

3

14

15

16

18

30

15

32

36

3

14

18

32



CSE332, Spring 2021L11: B-Trees (cont.)

Add Example (4 of 4)

11

Add 32, 36, 15, 16, 12, 40
M=3, L=3

15

16

18

30

15

32

36

3

14

18

32

15

16

18

30

15

32

36

40

3

12

14

18

32

add(12)
add(40)



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Add Algorithm (1 of 3)

1. Add the value to its leaf in key-sorted order

2. If the leaf now has L+1 items, overflow:

▪ Split the leaf into two leaves:

• Original leaf with  L/2 smaller items

• New leaf with L/2 = L/2 larger items

▪ Attach the new leaf to its parent

• Add a new key (smallest key in new leaf) to parent in sorted order

If step (2) caused the parent to have M+1 children, …

12



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Add Algorithm (2 of 3)

3. If step (2) caused an internal node to have M+1 children

▪ Split the internal node into two nodes

• Original node with  (M+1)/2 smaller keys

• New node with (M+1)/2 = M/2 larger keys

▪ Attach the new internal node to its parent

• Move the median key (smallest key in new node) to parent in sorted order

▪ If step (3) caused the parent to have M+1 children, repeat step (3) 
on the parent

4. If step (3) caused the root to have M+1 children

▪ Split the old root into two internal nodes, then add them to a 
newly-created root as described in step (3)

▪ This is the only case that increases the tree height!

13



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Add Algorithm (3 of 3)

❖ Note the similarities between the overflow steps:

❖ But also the difference when overflowing a root:

14

Split the leaf into two leaves:
• Original leaf with  (L+1)/2

smaller items
• New leaf with (L+1)/2 = L/2

larger items
Attach the new leaf to its parent
• Add a new key (smallest key in 

new leaf) to the parent in sorted 
order

Split the internal node into two leaves:
• Original node with  (M+1)/2

smaller items
• New node with (M+1)/2 = M/2

larger items
Attach the new internal node to its parent
• Move the median key (smallest key in 

new node) to the parent in sorted 
order

Split the root into two internal nodes:
• Left node with  (M+1)/2 smaller items
• Right node with (M+1)/2 = M/2 larger items
Attach the internal nodes to the new root
• Move the median key (smallest key in new right node) to the root



CSE332, Spring 2021

gradescope.com/courses/256241

L11: B-Trees (cont.)

❖ When splitting nodes in a B+ Tree, why do we need to copy keys out of 
leaves but move keys out of internal nodes?

15



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Add: Efficiency (1 of 2)

❖ Find correct leaf: O(log2 M logM n)

❖ Add (key, value) pair to leaf:  O(L)

▪ Why?

❖ Possibly split leaf: O(L)

▪ Why?

❖ Possibly split parents all the way up to root: O(M logM n)

▪ Why?

❖ Total: O(L + M logM n)

16



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Add: Efficiency (2 of 2)

❖ Worst-case runtime is O(L + M logM n)!

❖ But the worst-case isn’t that common!

▪ Splits are uncommon

• Only required when a node is full

• M and L are likely to be large and, after a split, nodes will be half empty

▪ Splitting the root is extremely rare

▪ Remember that our goal is minimizing disk accesses!  Disk accesses 
are still bound by O(logM n)

17



CSE332, Spring 2021L11: B-Trees (cont.)

Lecture Outline

❖ B-Trees

▪ Review and B+ Tree Add

▪ B+ Tree Remove

▪ Wrapup

❖ Balanced Tree Wrapup

18



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example:

❖ Remove 32, 15, 16, 14, 18

❖ M=3, L=3

▪ Min #children = 2

▪ Min #items = 2

19

15

16

18

30

15

32

36

38

3

12

14

18

32 40

40

45



CSE332, Spring 2021

gradescope.com/courses/256241

L11: B-Trees (cont.)

❖ Remove 32, 15

❖ M=3, L=3

▪ Min #children = 2

▪ Min #items = 2

20

15

16

18

30

15

32

36

38

3

12

14

18

32 40

40

45



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (1 of 8)

21

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

15

16

18

30

15

36

38

3

12

14

18

36 40

remove(32) 40

45

15

16

18

30

15

32

36

38

3

12

14

18

32 40

40

45



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (2 of 8)

22

16

18

30

36

38

3

12

14

18

36 40

remove(15) 40

45

15

16

18

30

15

36

38

3

12

14

18

36 40

40

45

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

Adopt an item from a 
neighbor leaf



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (3 of 8)

23

14 18

30

14

36

38

3

12

18

36 40

remove(16) 40

45

14

16

18

30

14

36

38

3

12

18

36 40

40

45

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

Merge with a neighbor leaf



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (4 of 8)

24

18

30

36

38

18

40

45

3

12

14

36

40

18

30

36

38

3

12

14

18

36 40

40

45

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

Adopt from a neighbor node



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (5 of 8)

25

18

30

36

38

18

40

45

3

12

36

40

18

36

40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

18

30

36

38

40

45

3

12

14

remove(14)



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (6 of 8)

26

30

36

38

40

45

3

12

36

40

18

36

40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

18

30

36

38

40

45

3

12

remove(18)

Merge with a neighbor leaf



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (7 of 8)

27

36

38

36 40

40

45

3

12

30

36

40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

36

38

40

45

3

12

30

Merge with a neighbor node



CSE332, Spring 2021L11: B-Trees (cont.)

Remove Example: Answer (8 of 8)

28

36

38

36 40

40

45

3

12

30

36 40

Remove 32, 15, 16, 14, 18
M=3, L=3; min children=2, min items=2

36

38

40

45

3

12

30

Delete the old root



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Remove Algorithm (1 of 3)

1. Remove the item from its leaf

2. If the leaf now has L/2-1, underflow:

▪ If a neighbor has > L/2 items, adopt

• Move parent’s key down, and neighbor’s adjacent key up

▪ Else, merge leaf with neighbor

• Guaranteed to have a legal number of items

• Remove parent’s key and move grandparent’s key down

• Parent now has one less leaf

If step (2) caused the parent to have M/2-1 children, …

29



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Remove Algorithm (2 of 3)

3. If step (2) caused an internal node to have  M/2-1 children

▪ If a neighbor has > M/2 keys, adopt and update parent

• Move parent’s key down, and neighbor’s adjacent key up

▪ Else, merge with neighbor node

• Guaranteed to have a legal number of keys

• Remove parent’s key and move grandparent’s key down

• Parent now has one less node, may need to continue up the tree

4. If step (3) caused the root to have have M/2-1 children

▪ If root went from 2 children to 1 child, move key down and make 
the child the new root

▪ This is the only case that decreases the tree height!

30



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Remove Algorithm (3 of 3)

❖ Again, note the similarities between the underflow steps:

31

If a neighbor leaf has > L/2 items,
adopt:

Move parent’s key down, and 
neighbor’s adjacent key up

Else merge leaf with neighbor:
Guaranteed to have a legal 
number of items
Remove parent’s key and move 
grandparent’s key down
Parent now has one less leaf

If a neighbor node has > M/2 items,
adopt:

Move parent’s key down, and 
neighbor’s adjacent key up

Else merge node with neighbor:
Guaranteed to have a legal number of 
keys
Remove parent’s key and move 
grandparent’s key down
Parent now has one less leaf



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Remove: Efficiency (1 of 2)

❖ Find correct leaf: O(log2 M logM n)

❖ Remove item from leaf: O(L)

▪ Why?

❖ Possibly adopt from or merge with neighbor leaf: O(L)

▪ Why?

❖ Possibly adopt or merge parent node up to root: O(M logM n)

▪ Why?

❖ Total: O(L + M logM n)

32



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Tree Remove: Efficiency (2 of 2)

❖ Worst-case runtime is O(L + M logM n)!

❖ But the worst-case isn’t that common!

▪ Merges are uncommon

• Only required when a node is half empty (🤔 half full?)

• M and L are likely large and, after a merge, nodes will be completely full

▪ Shrinking the height by removing the root is extremely rare

▪ Remember that our goal is minimizing disk accesses!  Disk accesses 
are still bound by O(logM n)

33



CSE332, Spring 2021L11: B-Trees (cont.)

Lecture Outline

❖ B-Trees

▪ Review and B+ Tree Add

▪ B+ Tree Remove

▪ Wrapup

❖ Balanced Tree Wrapup

❖ Hashing

▪ Designing Our Own Hash Function

▪ Hashing Applications

34



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Trees in Java?

❖ For most of our data structures, we encourage writing high-
level, reusable code.  Eg, using Java generics in our projects

❖ It’s a bad idea for B+ Trees, however

▪ Java can do balanced trees!  It can even do other B-Trees, such as the 
2-3 tree (which resembles a B+ Tree with M=3)

▪ Java wasn’t designed for things like managing disk accesses, which is 
the whole point of B+ Trees

▪ The key issue is Java’s extra levels of indirection…

35



CSE332, Spring 2021L11: B-Trees (cont.)

Possible Java Implementation: Code

Even if we assume int keys, Java’s data representation doesn’t 
match what we want out of a B+ Tree

36

class BTreeNode<E> {  // internal node

static final int M = 128;

int[]          keys = new int[M-1];

BTreeNode<E>[] children = new BTreeNode[M];

int numChildren = 0;

…

}

class BTreeLeaf<E> {  // leaf node

static final int L = 32;

int[] keys = new int[L-1];

E[]   items = new Object[L];

int   numItems = 0;

…

}



CSE332, Spring 2021L11: B-Trees (cont.)

Possible Java Implementation: Box-and-Arrows

37

(array of M-1 ints)

(array of M refs to 
BTreeNodes)

(array of L refs to item objects)

All the red references indicate “unnecessary” indirection that 
might be avoided in another programming language!

BTreeNode (internal node)

70numChildren

children

keys

BTreeLeaf (leaf node)

20numItems

items

Item objects not in contiguous memory

… 12 20 45 …

… …

… …



CSE332, Spring 2021L11: B-Trees (cont.)

B+ Trees in Java: The Moral of the Story

❖ The whole idea behind B+ trees was to keep related data in 
contiguous memory

❖ But this runs counter to the code and patterns Java encourages

▪ Java’s implementation of generic, reusable code is not want you 
want for your performance-critical web-index

❖ Other languages (e.g., C++) have better support for “flattening 
objects into arrays” in a generic, reusable way

❖ Levels of indirection matter!

38



CSE332, Spring 2021L11: B-Trees (cont.)

Lecture Outline

❖ B-Trees

▪ Review and B+ Tree Add

▪ B+ Tree Remove

▪ Wrapup

❖ Balanced Tree Wrapup

39



CSE332, Spring 2021L11: B-Trees (cont.)

Summary: Search Trees (1 of 2)

❖ Binary Search Trees make good dictionaries because they 
implement find, add, and remove as well as a number of 
useful operations such as flattenIntoSortedList or 
successor

▪ Essential and beautiful computer science

❖ Balanced search trees guarantee logarithmic-time operations

▪ … if you can maintain balance within the time bound

▪ AVL trees maintain balance by tracking height and allowing all 
children to differ in height by at most 1

▪ B trees maintain balance by keeping nodes at least half full and all 
leaves at same height

40



CSE332, Spring 2021L11: B-Trees (cont.)

Summary: Search Trees (2 of 2)

❖ Most balanced BSTs are Red-Black trees

▪ No extra space needed: store the (boolean) color in the pointer or as 
reversed children

▪ 1.39x taller than equivalent AVL tree, but still logarithmic in height

▪ Deletes are amortized constant

▪ Used in linux kernel (scheduler, epoll), C++ and Java libraries

❖ But difficult to reason about (especially in a lecture), so we use 
AVL and B+ trees to illustrate the ideas and techniques

▪ Also interesting are splay trees: self-adjusting; amortized guarantee; 
no extra space for height information

❖ Next up: dictionaries that don’t rely on trees at all!
41


