B-Trees (cont)
 CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Hamsa Shankar Nachiket Karmarkar

Patrick Murphy
Richard Jiang
Winston Jodjana

*ll gradescope

* In a B-tree, what is M? What is L? How does it relate to the two node types?
* What constraints are placed on the keys in the subtree rooted at the 5 , and the keys on the subtree rooted at the 6?

Announcements

* Expected turnaround time for quiz and project grading: $\sim 1.5 \mathrm{w}$
* We are not moving the p2 deadlines
- ... which includes the checkpoint deadline, tomorrow!

Lecture Outline

* B-Trees
- Review and B+ Tree Add
- B+ Tree Remove
- Wrapup
* Balanced Tree Wrapup

B-Tree Reminder: "Just Another Dictionary"

* Keep in mind how we got here:
- Large data sets won't fit entirely in memory
- Disk access is sloooooooooooooooooowwwwwwwww
- Design a search tree so we do one disk access per node
- Then, our goal becomes: keep this search tree as shallow as possible
- ... which minimizes disk accesses

Reminder: a dictionary maps keys to values; an item or data refers to the (key, value) pair

Decision \#1: M-ary Search Tree

* A search tree with branching factor M (instead of 2)
- Each node has a sorted array of M-1 children: Node []

for $M=5$
- Together, $\mathrm{M}-1$ children define the M ranges that we search through

- Choose M to fit into a disk block: only 1 disk access for entire array!

Decision \#2: Key-only Internal Nodes

* A Dictionary ADT stores key->value pairs; where should we store a key's value?
* BST stores value alongside the key at every node
- Loads entire node even if we are "passing through" to find a different key

* B-Tree only stores keys in internal nodes;

Add Example (1 of 4)

Add 32, 36, 15, 16, 12, 40
$\mathrm{M}=3, \mathrm{~L}=3$

Add Example (2 of 4)

Add 32, 36, 15, 16, 12, 40
$\mathrm{M}=3, \mathrm{~L}=3$

Split the leaf again, but
now the parent is full!

Add Example (3 of 4)

Split the parent (in this case, the root)

Add 32, 36, 15, 16, 12, 40
$\mathrm{M}=3, \mathrm{~L}=3$

Add Example (4 of 4)

Add 32, 36, 15, 16, 12, 40
$M=3, L=3$

B+ Tree Add Algorithm (1 of 3)

1. Add the value to its leaf in key-sorted order
2. If the leaf now has $L+1$ items, overflow:

- Split the leaf into two leaves:
- Original leaf with $\lceil L / 2\rceil$ smaller items
- New leaf with $\lfloor L / 2\rfloor=\lceil L / 2\rceil$ larger items
- Attach the new leaf to its parent
- Add a new key (smallest key in new leaf) to parent in sorted order

If step (2) caused the parent to have $M+1$ children, ...

B+ Tree Add Algorithm (2 of 3)

3. If step (2) caused an internal node to have $M+1$ children

- Split the internal node into two nodes
- Original node with $\lceil(M+1) / 2\rceil$ smaller keys
- New node with $\lfloor(M+1) / 2\rfloor=\lceil M / 2\rceil$ larger keys
- Attach the new internal node to its parent
- Move the median key (smallest key in new node) to parent in sorted order
- If step (3) caused the parent to have $M+1$ children, repeat step (3) on the parent

4. If step (3) caused the root to have $M+1$ children

- Split the old root into two internal nodes, then add them to a newly-created root as described in step (3)
- This is the only case that increases the tree height!

B+ Tree Add Algorithm (3 of 3)

* Note the similarities between the overflow steps:

Split the leaf into two leaves:

- Original leaf with $\lceil(L+1) / 2\rceil$ smaller items
- \quad New leaf with $\lfloor(L+\mathbf{1}) / 2\rfloor=\lceil\mathbf{L} / \mathbf{2}\rceil$ larger items
Attach the new leaf to its parent Add a new key (smallest key in new leaf) to the parent in sorted order

Split the internal node into two leaves:

- Original node with $\lceil(M+1) / 2\rceil$ smaller items
- \quad New node with $\lfloor(M+1) / 2\rfloor=\lceil M / 2\rceil$ larger items
Attach the new internal node to its parent
- Move)the median key (smallest key in new node) to the parent in sorted order
* But also the difference when overflowing a root:

Split the root into two internal nodes:

- Left node with $\lceil(M+1) / 2\rceil$ smaller items
- Right node with $\lfloor(M+1) / 2\rfloor=\lceil M / 2\rceil$ larger items

Attach the internal nodes to the new root

- Move the median key (smallest key in new right node) to the root

*ll gradescope

* When splitting nodes in a B+ Tree, why do we need to copy keys out of leaves but move keys out of internal nodes?

B+ Tree Add: Efficiency (1 of 2)
per-node number of nodes traversed

* Find correct leaf $O\left(\log _{2} M \log _{M} n\right)$ (aka tree height)
* Add (key, value) pair to leaf: $O(L)$ - L operations
- Why? Shift keys/values for insert
* Possibly split leaf: $O(L)-\frac{L}{2}$ operations
- Why? Copy keydvalues into split leaf
* Possibly split parents all the way up to root: $O\left(M \log _{M} n\right)$
- Why?
$*$ Total: $O\left(L+M \log _{M} n\right) \nabla$
($\frac{M}{2} \log _{M} n$ treeheight

$$
\left(\log _{2} M \log _{M} n+L+\frac{L}{2}+\frac{M}{2} \log _{M} n\right)
$$

B+ Tree Add: Efficiency (2 of 2)

* Worst-case runtime is $O\left(L+M \log _{M} n\right)$!
* But the worst-case isn't that common!
- Splits are uncommon
- Only required when a node is full
- M and L are likely to be large and, after a split, nodes will be half empty
- Splitting the root is extremely rare $<{ }_{0}$
- Remember that our goal is minimizing disk accesses! Disk accesses are still bound by $O\left(\log _{M} n\right)$

Lecture Outline

* B-Trees
- Review and B+ Tree Add
- B+ Tree Remove
- Wrapup
* Balanced Tree Wrapup

Remove Example:

* Remove 32, 15, 16, 14, 18
* $\mathrm{M}=3, \mathrm{~L}=3$
- Min \#children = 2
- Min \#items = 2

*lı gradescope

* Remove 32, 15
* $\mathrm{M}=3, \mathrm{~L}=3$
- Min \#children = 2
- Min \#items = 2

Remove Example: Answer (1 of 8)

Remove 32, 15, 16, 14, 18
$M=3, L=3$; min children $=2$, min items=2

Remove Example: Answer (2 of 8)

Remove 32,15, 16, 14, 18
$M=3, L=3$; min children $=2$, min items=2

Remove Example: Answer (3 of 8)

Merge with a neighbor leaf
remove(16)

Remove 32, 15,-16, 14, 18
$\mathrm{M}=3, \mathrm{~L}=3$; min children $=2$, min items=2

Remove Example: Answer (4 of 8)

Remove Example: Answer (5 of 8)

Remove 32, 15, 16, 14, 18
$\mathrm{M}=3, \mathrm{~L}=3$; min children=2, min items=2

Remove Example: Answer (6 of 8)

$\xrightarrow{\text { remove(18) }}$

Remove 32, 15, 16, 14,-18
$M=3, L=3$; min children $=2$, \min items=2

Merge with a neighbor leaf

Remove Example: Answer (7 of 8)

Merge with a neighbor node

Remove Example: Answer (8 of 8)

Delete the old root

Remove 32, 15, 16, 14,-18
$\mathrm{M}=3, \mathrm{~L}=3$; min children $=2$, min items=2

36	40	
\downarrow	1	\downarrow
3	36	40
12	38	45
30		

B+ Tree Remove Algorithm (1 of 3)

1. Remove the item from its leaf
2. If the leaf now has $\lceil L / 2\rceil-1$, underflow:

- If a neighbor has $>\lceil L / 2\rceil$ items, adopt
- Move parent's key down, and neighbor's adjacent key up
- Else, merge leaf with neighbor
- Guaranteed to have a legal number of items
- Remove parent's key and move grandparent's key down
- Parent now has one less leaf

If step (2) caused the parent to have $\lceil M / 2\rceil-1$ children, ...

B+ Tree Remove Algorithm (2 of 3)

3. If step (2) caused an internal node to have $\lceil M / 2\rceil-1$ children

- If a neighbor has $>\lceil M / 2\rceil$ keys, adopt and update parent
- Move parent's key down, and neighbor's adjacent key up
- Else, merge with neighbor node
- Guaranteed to have a legal number of keys
- Remove parent's key and move grandparent's key down
- Parent now has one less node, may need to continue up the tree

4. If step (3) caused the root to have have $\lceil M / 2\rceil-1$ children

- If root went from 2 children to 1 child, move key down and make the child the new root
- This is the only case that decreases the tree height!

B+ Tree Remove Algorithm (3 of 3)

* Again, note the similarities between the underflow steps:

If a neighbor leaf has $>\lceil L / 2\rceil$ items, adopt:

Move parent's key down, and neighbor's adjacent key up Else merge leaf with neighbor:

Guaranteed to have a legal number of items
Remove parent's key and move grandparent's key down
Parent now has one less leaf

If a neighbor node has $>\lceil M / 2\rceil$ items, adopt:

Move parent's key down, and neighbor's adjacent key up
Else merge node with neighbor:
Guaranteed to have a legal number of keys
Remove parent's key and move grandparent's key down
Parent now has one less leaf

B+ Tree Remove: Efficiency (1 of 2)
*Find correct leaf: $O\left(\log _{2} M \log _{M} n\right)$

* Remove item from leaf: $O(L)$
- Why? shift k/v auer the "hole"
* Possibly adopt from or merge with neighbor leaf: $O(L)$
- Why? copy neighbor's values into this leaf
* Possibly adopt or merge parent node up to root: $O\left(M \log _{M} n\right)$
- why? $\frac{M}{2} \log _{2} M$
* Total: $O\left(L+M \log _{M} n\right)$ Same as add

$$
\left(\begin{array}{c}
\left(\log _{2} M \log _{M} n+L+\frac{L}{2}+\frac{M}{2} \log _{2} M\right. \\
\text { find } \quad \text { adoast/neige } \\
\text { shift from adopt/nerge up to roo }
\end{array}\right.
$$

B+ Tree Remove: Efficiency (2 of 2)

* Worst-case runtime is $O\left(L+M \log _{M} n\right)$!
* But the worst-case isn't that common!
- Merges are uncommon
- Only required when a node is halfempty (: 定) half full?)
- M and L are likely large and, after a merge, nodes will be completely full
- Shrinking the height by removing the root is extremely rare
- Remember that our goal is minimizing disk accesses! Disk accesses are still bound by $O\left(\log _{M} n\right)$

Lecture Outline

* B-Trees
- Review and B+ Tree Add
- B+ Tree Remove
- Wrapup
* Balanced Tree Wrapup
* Hashing
- Designing Our Own Hash Function
- Hashing Applications

B+ Trees in Java?

* For most of our data structures, we encourage writing highlevel, reusable code. Eg, using Java generics in our projects
* It's a bad idea for B+ Trees, however
- Java can do balanced trees! It can even do other B-Trees, such as the 2-3 tree (which resembles a $\mathrm{B}+$ Tree with $\mathrm{M}=3$)
- Java wasn't designed for things like managing disk accesses, which is the whole point of $\mathrm{B}+$ Trees
- The key issue is Java's extra levels of indirection...

Possible Java Implementation: Code

Even if we assume int keys, Java's data representation doesn't match what we want out of a B+ Tree

```
class BTreeNode<E> { // internal node
    static final int M = 128;
    lon
}
class BTreeLeaf<E> { // leaf node
    static final int In= 32;
    int[]] keys =new int[L-1];
    E[] items = new Object[L];
}
```


Possible Java Implementation: Box-and-Arrows

B+ Trees in Java: The Moral of the Story

* The whole idea behind $\mathrm{B}+$ trees was to keep related data in contiguous memory
* But this runs counter to the code and patterns Java encourages - Java's implementation of generic, reusable code is not want you want for your performance-critical web-index
* Other languages (e.g., $\mathrm{C}++$) have better support for "flattening objects into arrays" in a generic, reusable way
* Levels of indirection matter!

Lecture Outline

* B-Trees
- Review and B+ Tree Add
- B+ Tree Remove
- Wrapup
* Balanced Tree Wrapup

Summary: Search Trees (1 of 2)

* Binary Search Trees make good dictionaries because they implement find, add, and remove as well as a number of useful operations such as flattenIntoSortediist or successor
- Essential and beautiful computer science
* Balanced search trees guarantee logarithmic-time operations
- ... if you can maintain balance within the time bound
- AVL trees maintain balance by tracking height and allowing all children to differ in height by at most 1
- B trees maintain balance by keeping nodes at least half full and all leaves at same height

Summary: Search Trees (2 of 2)

* Most balanced BSTs are Red-Black trees
- No extra space needed: store the (boolean) color in the pointer or as reversed children
- 1.39x taller than equivalent AVL tree, but still logarithmic in height
- Deletes are amortized constant
- Used in linux kernel (scheduler, epoll), C++ and Java libraries
* But difficult to reason about (especially in a lecture), so we use AVL and B+ trees to illustrate the ideas and techniques
- Also interesting are splay trees: self-adjusting; amortized guarantee; no extra space for height information
* Next up: dictionaries that don't rely on trees at all!

