
CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Memory Hierarchy; B-Trees
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L10: Memory Hierarchy; B-Trees

❖ Suppose we have 100,000,000 items. What is the maximum height of:

▪ A perfectly-balanced BST?

▪ A perfectly-balanced octonary search tree?

• Like a BST, but with <= 8 children instead of 2

▪ An AVL tree?

2

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Announcements

❖ P2 has been released!

❖ Project and quiz deadlines will never overlap again <3

❖ Expected turnaround time for quiz and project grading: ~1.5w

3

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

4

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

And Now for Something Completely Different…

❖ We have a simple and elegant data structure for the Dictionary
ADT: the Binary Search Tree

▪ But its worst-case behavior isn’t great

❖ We can guarantee worst-case O(log n) with an AVL tree

▪ … but at the cost of increased implementation complexity and space

▪ One of several interesting/fantastic balanced-tree approaches!

❖ We will learn another balanced-tree approach: B-trees

▪ It performs really well on large dictionaries (eg >1GB = 230 bytes)

▪ But to understand why, we need some memory-hierarchy basics

5

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

Why Does the Memory Hierarchy Matter?

❖ We said “every memory access has an unimportant O(1) cost”

▪ Learn more in CSE 351/333/471

▪ Focus here is on relevance to data structures and efficiency

6

We claimed these
two operations were
approximately equal!

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

A Typical Real-World Memory Hierarchy

7

instructions (e.g., addition): 230/sec

fetch data in L1: 229/sec = 2 instructions

fetch data in L2: 225/sec = 30 instructions

fetch data in main memory: 222/sec =
250 instructions

fetch data from “new place” on HDD:
27/sec = 8,000,000 instructions

(immaterial difference with SSD)

CPU

Disk
1TB = 240

Main Memory
2GB = 231

L2 Cache
2MB = 221

L1 Cache
128KB = 217 bytes

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Said In Another Way …

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

8

Sticky note on monitor

Yelling for your roommate

Flipping through textbook

Retaking 311 and
then retaking 332 😱

https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Hardware and OS Support (1 of 2)

❖ The hardware and OS work together to
automatically move data into and out of
successive levels for you!

▪ Replaces items currently in memory/L2/L1

▪ Data structures and algorithms are faster if
“fits in cache”

❖ Terminology:

▪ Data moved from disk into memory is in
“block” or “page” size

▪ Data moved from memory into L1/L2 cache
is in cache “line” size

10

CPU

Disk
1TB = 240

Main Memory
2GB = 231

L2 Cache
2MB = 221

L1 Cache
128KB = 217 bytes

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Hardware and OS Support (2 of 2)

❖ Terminology:

▪ Data moved from disk into memory is in “block” or “page” size

▪ Data moved from memory into L1/L2 cache is in cache “line” size

❖ Neither movement nor sizes are under programmer control!

❖ Most code “just works” most of the time

▪ … but sometimes designing data structures and algorithms with
knowledge of memory hierarchy is worth it

▪ And when you do design memory-aware software, you often need to
know one more thing …

11

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

How Data Moves Around the Hierarchy

❖ Hardware/OS often fetches a chunk of data instead of a byte

▪ Moving data up the hierarchy is slow because of the lower level’s
latency (think: distance-to-travel)

▪ However, the latency is the same regardless if your program
requests one byte or one chunk (think: carpool)

▪ So a single fetch often causes the hardware/OS to send nearby
memory because it’s easy and likely to be asked for soon (think:
object fields or arrays)

❖ Once data has moved up the hierarchy, keep it around

▪ A particular piece of data is more likely to be accessed again in the
near future than some random other piece of data

12

Temporal Locality

Spatial Locality

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Locality Principles, in Detail

❖ Spatial Locality (locality in space)
▪ If an address is referenced, addresses that are close by tend to be

referenced soon

❖ Temporal Locality (locality in time)
▪ If an address is referenced, that same address tends to be

referenced again soon

13

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

14

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Spatial Locality: Arrays vs. Linked Lists (1 of 3)

❖ Which has the potential to take advantage of spatial locality?
Array vs Linked List?

▪ As a simplification, assume each object allocated via Java’s uses
contiguous space

15

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Spatial Locality: Arrays vs. Linked Lists (2 of 3)

❖ An array benefits more than a linked list from spatial locality

▪ Language (e.g., Java) implementation can put LL nodes anywhere,
whereas an array is typically implemented as contiguous memory

▪ Contiguous memory benefits from spatial locality

❖ Suppose 223 items of 27 bytes each. They are stored on disk
and the block size is 210 bytes

▪ An array needs 220 disk accesses

• If “perfectly streamed”, > 4 seconds

• If “random places on disk”, 8000 seconds (> 2 hours)

▪ A linked list in the worst case needs 223 disk accesses

• Assuming “random” placement around disk, >16 hours

16

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Spatial Locality: Arrays vs. Linked Lists (3 of 3)

❖ However! “Array” doesn’t necessarily mean “good”

▪ Binary heaps “make big jumps” to percolate

▪ Constantly loading/unloading different blocks from disk

17

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

What About BSTs? (1 of 2)

❖ Operations on balanced BSTs are O(log n)

▪ Even for n = 239 (512 GB just for keys), isn’t this ok?

❖ Big-Oh is a good start, but # disk accesses still matters:

▪ Pretend those 239 nodes were in an AVL tree of height 55

▪ Most of the nodes will be on disk

• Tree is shallow, but it is still many gigabytes big

• Entire tree cannot fit in memory

▪ Even if memory holds the first 25 nodes on our path, we still
potentially need 30 disk accesses if we are traversing the entire
height of the tree

18

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

What about BSTs? (2 of 2)

❖ In this scenario, a better data structure would exploit the block
size and (relatively) fast memory access to avoid disk accesses

19

If your data structure is mostly on disk,
minimize disk accesses!

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

20

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Our B-Tree Goal

❖ Problem: A dictionary with so many items most of it is on disk

❖ Goal: A balanced tree (logarithmic height) that minimizes disk
accesses

❖ Let’s look at two design decisions that’ll get us there

❖ Let’s An idea: Increase the branching factor of our tree

▪ Each node

21

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

❖ A search tree with branching factor M (instead of 2)

▪ Each node has a key-sorted array of M children: Node[]

▪ M-1 keys define the M subtrees (ie, ranges) that we search through

▪ Choose M to fit into a disk block: only 1 disk access for entire array!

Decision #1: M-ary Search Tree

22

for M = 5

3 7 21 84

21x<847x<213x<7x<3 84x

for M = 5

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Decision #1: M-ary Performance?

❖ Runtime for find = NumHops * WorkPerHop

▪ Balanced tree height is: logMn (M-ary) vs log2n (binary)

• Eg: M = 256 (=28) and n = 240, M-ary makes 5 hops vs binary makes 40 hops

▪ For each internal node, how to decide which child to take?

• Binary: Less than vs greater than node’s single key? 1 comparison

• M-ary: In range 1? In range 2? In range 3?... In range M?

– Linear search the Node[]: M comparisons

– Binary search the Node[]: log2n comparisons

❖ Runtime for M-ary find:

▪ O(log2M logMn)

23

3 7 21 84

21x<847x<213x<7x<3 84x

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Decision #1: M-ary Order Property

❖ M-ary search tree’s order property is the M-way extension of a
BST’s 2-way ordering property

▪ Subtree between keys a and b contains the keys between them

▪ Ie, a ≤ k < b

24

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

9

5 17

311

9: Elderberry 5: Canteloupe 8: Apple 9: Banana 17: Apple 31: Fig

8

Decision #2: Key-only Internal Nodes

❖ A Dictionary ADT stores key->value pairs; where should we
store a key’s value?

❖ BST stores value alongside the key at
every node

▪ Loads entire node even if we are “passing
through” to find a different key

❖ B-Tree only stores keys in internal nodes;
values live in special key/value leaves

25

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Decision #2: Key-only Internal Nodes

❖ A Dictionary ADT stores key->value pairs; where should we
store a key’s value?

❖ BST stores value alongside the key at
every node

▪ Loads entire node even if we are “passing
through” to find a different key

❖ B-Tree only stores keys in internal nodes;
values live in special key/value leaves

26

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry

9

5 17

311

9: Elderberry 5: Canteloupe 8: Apple 9: Banana 17: Apple 31: Fig

8

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

27

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Tree Node Structure

❖ Two node types: internal and leaf

❖ Each internal node contains up to
M-1 keys (for up to M children)

▪ Does not store values, only keys

▪ Function as “signposts”

❖ Each leaf node contains up to L
items

▪ Stores (key, value) pairs

▪ As usual, we’ll ignore the “along for the
ride” value in our examples

28

Both the textbook and we refer to “B+ Trees”
as “B-Trees”, but “B-Trees” actually

encompass several variants

3 “cat”

7 “apple”

21 “purple”

84 “ideas”

21x<847x<213x<7x<3 84x

3 7 21 84

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Tree Parameters

❖ Two parameters, one for each type of
node:

▪ M = # of children in an internal node

• The ranges are defined by M-1 keys

▪ L = # of items in a leaf node

❖ Picking M and L based on disk-block
size maximizes B+ Tree’s efficiency

▪ Recommend M* ≈ diskBlockSize/keySize

▪ Recommend L = diskBlockSize/(keySize +
valueSize)

▪ In practice, M≫ L

• Since typically sizeof(key) ≫ sizeof(value)

29

* More precisely, we recommend
M = (diskBlockSize + keySize)/(keySize + pointerSize)

ptr1 ptr2 … ptrm-1 ptrm

(sorted by key)

k1 v1

k2 v2

… …

kL vL

(sorted by key)

k1 k2 … km-1

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Tree Structure

❖ Internal nodes

▪ Have between M/2 and M children; i.e., at least half full

▪ Reminder: no values, just keys

❖ Leaf nodes

▪ All leaves at the same depth

▪ Have between L/2 and L items; i.e., at least half full

▪ Reminder: keys and values

❖ Root node – A Special Case!

▪ If tree has L items, root is a leaf node

• Unusual; only occurs when starting up

▪ Else, root is an internal node and has between 2 and M children

• i.e., the “at least half full” condition does not apply 30

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Trees are Balanced (Enough)

❖ Not hard to show height h is logarithmic in number of items n

▪ Let M > 2 (if M = 2, then a “linked list tree” is legal – no good!)

▪ Because all nodes are at least half full (except possibly the root) and
all leaves are at the same level, the minimum number of items n for
a height h>0 tree is

n 2 M/2 h-1 L/2

31

minimum number
of leaves

minimum items
per leaf

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Trees are Shallower than AVL Trees

❖ Suppose we have 100,000,000 items

❖ Maximum height of AVL tree?

▪ Recall S(h) = 1 + S(h-1) + S(h-2)

▪ So: 37

❖ Maximum height of B+ Tree with M=128 and L=64?

▪ Recall n 2 M/2 h-1 L/2

▪ So: 5 (and 4 is more likely)

32

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Trees are Disk Friendly (1 of 2)

❖ Reduces number of disk accesses during find

▪ Large M = shallower tree = potentially fewer accesses

▪ Requires that we pick M wisely

• Too large: multiple disk accesses to load a single internal node

• Too small: tree could’ve been shallower

▪ Binary search over M-1 keys insignificant compared to disk access

❖ Reduces unnecessary data transferred from disk

▪ find wants one value; doesn’t load “incorrect” values into memory

▪ Only one disk access to bring (the single correct) value into memory:
when we find the correct leaf node

33

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Trees are Disk Friendly (2 of 2)

❖ Maximizes temporal locality

▪ Since typically sizeof(key) ≫ sizeof(value), can hold significantly more
B+ Tree-style internal nodes in memory than BST-style nodes

▪ B+ Tree-style internal nodes are used more often (they differentiate
between a larger fraction of keys) than BST-style nodes, and
therefore are more likely to be held in memory by the OS

34

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

35

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

B+ Tree Find/Contains

❖ M-way extension of a BST’s root-to-leaf recursive algorithm

▪ At each internal node, do binary search on (up to) M-1 keys to
determine which branch to take

▪ At the leaf node, do binary search on the (up to) L items

▪ Requires that keys are sorted in both internal and leaf nodes!

❖ Difference:

▪ Since we don’t store value at internal
nodes, there is no “best case” of finding
our value at the root node; must
always traverse to the bottom of
B+ Tree

36
21x7x<213x<7x<3

73 21

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Find/Contains Example

❖ Tree with M=4 (max #pointers in internal node) and L=5 (max
#items in leaf node)

▪ All internal nodes must have ≥2 children

▪ All leaf nodes must have ≥3 items (but we are only showing keys)

37

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

12 44

6 20 27 34 50

19

24

1

2

4

Notation:
• Internal nodes drawn horizontally
• Leaf nodes drawn vertically
• All nodes include empty cells

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

38

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example:

❖ Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38

❖ M=3, L=3

39

Min/Max slots in root:
Min/Max slots in interior node:
Min/Max slots in leaf:

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (1 of 7)

40

Special case: the
root is a leaf node

add(3) add(18) add(14)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

3 3

18

3

14

18

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (2 of 7)

41

• When we “overflow” a leaf, it is
split and the parent gains another
key (to select between the two
leaves)

• Parent’s new key is the smallest
element in the right child

• If there is no parent, create one

add(30)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

30

3

14

3

14

18

3

14

18

18

30

18

Special case: the
root is a leaf node

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (3 of 7)

42

Split the leaf again

add(32)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

3

14

18

30

18

3

14

18

30

32

18

add(36)

3

14

18

30

18 32

32

36

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (4 of 7)

43

Split the leaf again, but
now the parent is full!

add(15)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

3

14

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36 add(16)

3

14

15

18

30

18 32

32

36

16

15

16

18

30

18 32

32

36

15

3

14

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (5 of 7)

44

Split the parent (in this case, the root).
Note that the median key moves into the
parent (vs being copied)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

15

16

18

30

18 32

32

36

15

3

14

15

16

18

30

15

32

36

3

14

18

32

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (6 of 7)

45

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

15

16

18

30

15

32

36

3

14

18

32

15

16

18

30

15

32

36

40

3

12

14

18

32

add(12)
add(40)

CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (7 of 7)

46

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

15

16

18

30

15

32

36

40

3

12

14

18

32

15

16

18

30

15

32

36

38

3

12

14

18

32 40

add(45)
add(38)

40

45

Split the leaf again

