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❖ Suppose we have 100,000,000 items.  What is the maximum height of:

▪ A perfectly-balanced BST?

▪ A perfectly-balanced octonary search tree?

• Like a BST, but with <= 8 children instead of 2

▪ An AVL tree?
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Announcements

❖ P2 has been released!

❖ Project and quiz deadlines will never overlap again <3

❖ Expected turnaround time for quiz and project grading: ~1.5w
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Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add
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And Now for Something Completely Different…

❖ We have a simple and elegant data structure for the Dictionary 
ADT: the Binary Search Tree

▪ But its worst-case behavior isn’t great

❖ We can guarantee worst-case O(log n) with an AVL tree

▪ … but at the cost of increased implementation complexity and space

▪ One of several interesting/fantastic balanced-tree approaches!

❖ We will learn another balanced-tree approach: B-trees

▪ It performs really well on large dictionaries (eg >1GB = 230 bytes)

▪ But to understand why, we need some memory-hierarchy basics
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// Requires arr to be sorted     

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

Why Does the Memory Hierarchy Matter?

❖ We said “every memory access has an unimportant O(1) cost”

▪ Learn more in CSE 351/333/471

▪ Focus here is on relevance to data structures and efficiency

6

We claimed these 
two operations were 
approximately equal! 
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A Typical Real-World Memory Hierarchy

7

instructions (e.g., addition): 230/sec

fetch data in L1: 229/sec = 2 instructions

fetch data in L2: 225/sec = 30 instructions 

fetch data in main memory: 222/sec = 
250 instructions 

fetch data from “new place” on HDD: 
27/sec = 8,000,000 instructions

(immaterial difference with SSD)

CPU

Disk
1TB = 240

Main Memory
2GB = 231

L2 Cache
2MB = 221

L1 Cache
128KB = 217 bytes
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Said In Another Way …

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)
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Sticky note on monitor

Yelling for your roommate

Flipping through textbook

Retaking 311 and 
then retaking 332 😱

https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
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Hardware and OS Support (1 of 2)

❖ The hardware and OS work together to 
automatically move data into and out of 
successive levels for you!

▪ Replaces items currently in memory/L2/L1

▪ Data structures and algorithms are faster if 
“fits in cache”

❖ Terminology:

▪ Data moved from disk into memory is in 
“block” or “page” size

▪ Data moved from memory into L1/L2 cache
is in cache “line” size
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CPU

Disk
1TB = 240

Main Memory
2GB = 231

L2 Cache
2MB = 221

L1 Cache
128KB = 217 bytes
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Hardware and OS Support (2 of 2)

❖ Terminology:

▪ Data moved from disk into memory is in “block” or “page” size

▪ Data moved from memory into L1/L2 cache is in cache “line” size

❖ Neither movement nor sizes are under programmer control!

❖ Most code “just works” most of the time

▪ … but sometimes designing data structures and algorithms with 
knowledge of memory hierarchy is worth it

▪ And when you do design memory-aware software, you often need to 
know one more thing …

11



CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

How Data Moves Around the Hierarchy

❖ Hardware/OS often fetches a chunk of data instead of a byte

▪ Moving data up the hierarchy is slow because of the lower level’s 
latency (think: distance-to-travel)

▪ However, the latency is the same regardless if your program 
requests one byte or one chunk (think: carpool)

▪ So a single fetch often causes the hardware/OS to send nearby 
memory because it’s easy and likely to be asked for soon (think: 
object fields or arrays)

❖ Once data has moved up the hierarchy, keep it around

▪ A particular piece of data is more likely to be accessed again in the 
near future than some random other piece of data

12

Temporal Locality

Spatial Locality  
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Locality Principles, in Detail

❖ Spatial Locality (locality in space)
▪ If an address is referenced, addresses that are close by tend to be 

referenced soon

❖ Temporal Locality (locality in time)
▪ If an address is referenced, that same address tends to be 

referenced again soon
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Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add
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Spatial Locality: Arrays vs. Linked Lists (1 of 3)

❖ Which has the potential to take advantage of spatial locality?  
Array vs Linked List?

▪ As a simplification, assume each object allocated via Java’s uses 
contiguous space
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Spatial Locality: Arrays vs. Linked Lists (2 of 3)

❖ An array benefits more than a linked list from spatial locality

▪ Language (e.g., Java) implementation can put LL nodes anywhere, 
whereas an array is typically implemented as contiguous memory

▪ Contiguous memory benefits from spatial locality

❖ Suppose 223 items of 27 bytes each.  They are stored on disk 
and the block size is 210 bytes

▪ An array needs 220 disk accesses

• If “perfectly streamed”, > 4 seconds

• If “random places on disk”, 8000 seconds (> 2 hours)

▪ A linked list in the worst case needs 223 disk accesses

• Assuming “random” placement around disk, >16 hours
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Spatial Locality: Arrays vs. Linked Lists (3 of 3)

❖ However!  “Array” doesn’t necessarily mean “good”

▪ Binary heaps “make big jumps” to percolate

▪ Constantly loading/unloading different blocks from disk

17
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What About BSTs? (1 of 2)

❖ Operations on balanced BSTs are O(log n)

▪ Even for n = 239 (512 GB just for keys), isn’t this ok?

❖ Big-Oh is a good start, but # disk accesses still matters:

▪ Pretend those 239 nodes were in an AVL tree of height 55

▪ Most of the nodes will be on disk

• Tree is shallow, but it is still many gigabytes big

• Entire tree cannot fit in memory

▪ Even if memory holds the first 25 nodes on our path, we still 
potentially need 30 disk accesses if we are traversing the entire 
height of the tree
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What about BSTs? (2 of 2)

❖ In this scenario, a better data structure would exploit the block 
size and (relatively) fast memory access to avoid disk accesses

19

If your data structure is mostly on disk, 
minimize disk accesses!



CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add
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Our B-Tree Goal

❖ Problem: A dictionary with so many items most of it is on disk

❖ Goal: A balanced tree (logarithmic height) that minimizes disk 
accesses

❖ Let’s look at two design decisions that’ll get us there

❖ Let’s An idea: Increase the branching factor of our tree

▪ Each node 

21

Reminder: a dictionary maps keys to values; 
an item or data refers to the (key, value) pair
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❖ A search tree with branching factor M (instead of 2)

▪ Each node has a key-sorted array of M children: Node[]

▪ M-1 keys define the M subtrees (ie, ranges) that we search through

▪ Choose M to fit into a disk block: only 1 disk access for entire array!

Decision #1: M-ary Search Tree

22

for M = 5

3 7 21 84

21x<847x<213x<7x<3 84x

for M = 5
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Decision #1: M-ary Performance?

❖ Runtime for find = NumHops * WorkPerHop

▪ Balanced tree height is: logMn (M-ary)   vs   log2n (binary)

• Eg: M = 256 (=28) and n = 240, M-ary makes 5 hops vs binary makes 40 hops

▪ For each internal node, how to decide which child to take?

• Binary: Less than vs greater than node’s single key?  1 comparison

• M-ary: In range 1? In range 2? In range 3?... In range M?

– Linear search the Node[]: M comparisons

– Binary search the Node[]: log2n comparisons

❖ Runtime for M-ary find:

▪ O(log2M logMn)

23

3 7 21 84

21x<847x<213x<7x<3 84x
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Decision #1: M-ary Order Property 

❖ M-ary search tree’s order property is the M-way extension of a 
BST’s 2-way ordering property

▪ Subtree between keys a and b contains the keys between them

▪ Ie, a ≤ k < b

24
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9

5 17

311

9: Elderberry 5: Canteloupe 8: Apple 9: Banana 17: Apple 31: Fig

8

Decision #2: Key-only Internal Nodes

❖ A Dictionary ADT stores key->value pairs; where should we 
store a key’s value?

❖ BST stores value alongside the key at
every node

▪ Loads entire node even if we are “passing
through” to find a different key

❖ B-Tree only stores keys in internal nodes;
values live in special key/value leaves

25

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry



CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Decision #2: Key-only Internal Nodes

❖ A Dictionary ADT stores key->value pairs; where should we 
store a key’s value?

❖ BST stores value alongside the key at
every node

▪ Loads entire node even if we are “passing
through” to find a different key

❖ B-Tree only stores keys in internal nodes;
values live in special key/value leaves
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9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry

9

5 17

311

9: Elderberry 5: Canteloupe 8: Apple 9: Banana 17: Apple 31: Fig

8
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Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add
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B+ Tree Node Structure

❖ Two node types: internal and leaf

❖ Each internal node contains up to 
M-1 keys (for up to M children)

▪ Does not store values, only keys

▪ Function as “signposts”

❖ Each leaf node contains up to L
items

▪ Stores (key, value) pairs

▪ As usual, we’ll ignore the “along for the 
ride” value in our examples

28

Both the textbook and we refer to “B+ Trees” 
as “B-Trees”, but “B-Trees” actually 

encompass several variants

3 “cat”

7 “apple”

21 “purple”

84 “ideas”

21x<847x<213x<7x<3 84x

3 7 21 84
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B+ Tree Parameters

❖ Two parameters, one for each type of 
node:

▪ M = # of children in an internal node

• The ranges are defined by M-1 keys

▪ L =  # of items in a leaf node

❖ Picking M and L based on disk-block 
size maximizes B+ Tree’s efficiency

▪ Recommend M* ≈ diskBlockSize/keySize

▪ Recommend L = diskBlockSize/(keySize + 
valueSize)

▪ In practice, M≫ L

• Since typically sizeof(key) ≫ sizeof(value)

29

* More precisely, we recommend 
M = (diskBlockSize + keySize)/(keySize + pointerSize)

ptr1 ptr2 … ptrm-1 ptrm

(sorted by key)

k1 v1

k2 v2

… …

kL vL

(sorted by key)

k1 k2 … km-1
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B+ Tree Structure

❖ Internal nodes

▪ Have between M/2 and M children; i.e., at least half full

▪ Reminder: no values, just keys

❖ Leaf nodes

▪ All leaves at the same depth

▪ Have between L/2 and L items; i.e., at least half full

▪ Reminder: keys and values

❖ Root node – A Special Case!

▪ If tree has  L items, root is a leaf node

• Unusual; only occurs when starting up

▪ Else, root is an internal node and has between 2 and M children

• i.e., the “at least half full” condition does not apply 30
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B+ Trees are Balanced (Enough)

❖ Not hard to show height h is logarithmic in number of items n

▪ Let M > 2 (if M = 2, then a “linked list tree” is legal – no good!)

▪ Because all nodes are at least half full (except possibly the root) and 
all leaves are at the same level, the minimum number of items n for 
a height h>0 tree is

n   2 M/2 h-1 L/2

31

minimum number
of leaves

minimum items 
per leaf
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B+ Trees are Shallower than AVL Trees

❖ Suppose we have 100,000,000 items

❖ Maximum height of AVL tree?

▪ Recall S(h) = 1 + S(h-1) + S(h-2)

▪ So: 37

❖ Maximum height of B+ Tree with M=128 and L=64?

▪ Recall n  2 M/2 h-1 L/2

▪ So: 5 (and 4 is more likely)

32
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B+ Trees are Disk Friendly (1 of 2)

❖ Reduces number of disk accesses during find

▪ Large M = shallower tree = potentially fewer accesses

▪ Requires that we pick M wisely

• Too large: multiple disk accesses to load a single internal node

• Too small: tree could’ve been shallower

▪ Binary search over M-1 keys insignificant compared to disk access

❖ Reduces unnecessary data transferred from disk

▪ find wants one value; doesn’t load “incorrect” values into memory

▪ Only one disk access to bring (the single correct) value into memory: 
when we find the correct leaf node

33
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B+ Trees are Disk Friendly (2 of 2)

❖ Maximizes temporal locality

▪ Since typically sizeof(key) ≫ sizeof(value), can hold significantly more 
B+ Tree-style internal nodes in memory than BST-style nodes

▪ B+ Tree-style internal nodes are used more often (they differentiate 
between a larger fraction of keys) than BST-style nodes, and 
therefore are more likely to be held in memory by the OS

34
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Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

35
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B+ Tree Find/Contains

❖ M-way extension of a BST’s root-to-leaf recursive algorithm

▪ At each internal node, do binary search on (up to) M-1 keys to 
determine which branch to take

▪ At the leaf node, do binary search on the (up to) L items

▪ Requires that keys are sorted in both internal and leaf nodes!

❖ Difference:

▪ Since we don’t store value at internal
nodes, there is no “best case” of finding
our value at the root node; must
always traverse to the bottom of
B+ Tree 

36
21x7x<213x<7x<3

73 21
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Find/Contains Example

❖ Tree with M=4 (max #pointers in internal node) and L=5 (max 
#items in leaf node)

▪ All internal nodes must have ≥2 children

▪ All leaf nodes must have ≥3 items (but we are only showing keys)

37

6

8

9

10

12

14

16

17 

20

22

27

28

32

34

38

39

41

44

47

49 

50

60

70

12 44

6 20 27 34 50

19 

24

1

2

4

Notation:
• Internal nodes drawn horizontally
• Leaf nodes drawn vertically
• All nodes include empty cells



CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Lecture Outline

❖ Memory Hierarchy Basics

▪ What is the Memory Hierarchy?

▪ How does it impact data structure design?

❖ B-Trees

▪ Goals and Design

▪ B+ Tree Structure

▪ B+ Tree Implementation: Find

▪ B+ Tree Implementation: Add

38
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Add Example:

❖ Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38

❖ M=3, L=3

39

Min/Max slots in root:
Min/Max slots in interior node:
Min/Max slots in leaf: 
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Add Example: Answer (1 of 7)

40

Special case: the 
root is a leaf node

add(3) add(18) add(14)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

3 3

18

3

14

18
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Add Example: Answer (2 of 7)

41

• When we “overflow” a leaf, it is 
split and the parent gains another 
key (to select between the two 
leaves)

• Parent’s new key is the smallest 
element in the right child

• If there is no parent, create one

add(30)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

30

3

14

3

14

18

3

14

18

18

30

18

Special case: the 
root is a leaf node
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Add Example: Answer (3 of 7)

42

Split the leaf again

add(32)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

3

14

18

30

18

3

14

18

30

32

18

add(36)

3

14

18

30

18 32

32

36
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Add Example: Answer (4 of 7)

43

Split the leaf again, but 
now the parent is full!

add(15)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

3

14

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36 add(16)

3

14

15

18

30

18 32

32

36

16

15

16

18

30

18 32

32

36

15

3

14
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Add Example: Answer (5 of 7)

44

Split the parent (in this case, the root).  
Note that the median key moves into the 
parent (vs being copied)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

15

16

18

30

18 32

32

36

15

3

14

15

16

18

30

15

32

36

3

14

18

32
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Add Example: Answer (6 of 7)

45

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

15

16

18

30

15

32

36

3

14

18

32

15

16

18

30

15

32

36

40

3

12

14

18

32

add(12)
add(40)



CSE332, Spring 2021L10: Memory Hierarchy; B-Trees

Add Example: Answer (7 of 7)

46

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

15

16

18

30

15

32

36

40

3

12

14

18

32

15

16

18

30

15

32

36

38

3

12

14

18

32 40

add(45)
add(38)

40

45

Split the leaf again


