Memory Hierarchy; B-Trees CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

ill gradescope

gradescope.com/courses/256241

- Suppose we have 100,000,000 items. What is the maximum height of:
 - A perfectly-balanced BST?
 - A perfectly-balanced octonary search tree?
 - Like a BST, but with <= 8 children instead of 2
 - An AVL tree?

Announcements

- P2 has been released!
- Project and quiz deadlines will never overlap again <3
- Expected turnaround time for quiz and project grading: ~1.5w

Lecture Outline

- Memory Hierarchy Basics
 - What is the Memory Hierarchy?
 - How does it impact data structure design?
- B-Trees
 - Goals and Design
 - B+ Tree Structure
 - B+ Tree Implementation: Find
 - B+ Tree Implementation: Add

And Now for Something Completely Different...

- We have a simple and elegant data structure for the Dictionary ADT: the Binary Search Tree
 - But its worst-case behavior isn't great
- We can guarantee worst-case $O(\log n)$ with an AVL tree
 - ... but at the cost of increased implementation complexity and space
 - One of several interesting/fantastic balanced-tree approaches!
- We will learn another balanced-tree approach: B-trees
 - It performs really well on large dictionaries (eg >1GB = 2³⁰ bytes)
 - But to understand why, we need some memory-hierarchy basics

Why Does the Memory Hierarchy Matter?

- ✤ We said "every memory access has an unimportant O(1) cost"
 - Learn more in CSE 351/333/471
 - Focus here is on relevance to data structures and efficiency

CSE332, Spring 2021

A Typical Real-World Memory Hierarchy

instructions (e.g., addition): 2³⁰/sec

fetch data in L1: 2²⁹/sec = 2 instructions

fetch data in L2: 2²⁵/sec = 30 instructions

fetch data in main memory: 2²²/sec = 250 instructions

fetch data from "new place" on HDD: 2⁷/sec = 8,000,000 instructions (immaterial difference with SSD)

Said In Another Way ...

Jeff Dean's "Numbers Everyone Should Know" (LADIS '09)

Hardware and OS Support (1 of 2)

- The hardware and OS work together to automatically move data into and out of successive levels for you!
 - Replaces items currently in memory/L2/L1
 - Data structures and algorithms are faster if "fits in cache"

Terminology:

- Data moved from disk into memory is in "block" or "page" size
- Data moved from memory into L1/L2 cache is in cache "line" size

Hardware and OS Support (2 of 2)

- Terminology:
 - Data moved from disk into memory is in "block" or "page" size
 - Data moved from memory into L1/L2 cache is in cache "line" size
- Neither movement nor sizes are under programmer control!
- Most code "just works" most of the time
 - ... but sometimes designing data structures and algorithms with knowledge of memory hierarchy is worth it
 - And when you do design memory-aware software, you often need to know one more thing ...

How Data Moves Around the Hierarchy

Spatial Locality

- Hardware/OS often fetches a chunk of data instead of a byte
 - Moving data up the hierarchy is slow because of the *lower level's latency* (think: distance-to-travel)
 - However, the latency is the same regardless if your program requests one byte or one chunk (think: carpool)
 - So a single fetch often causes the hardware/OS to send <u>nearby</u> <u>memory</u> because it's easy and likely to be asked for soon (think: object fields or arrays)

Temporal Locality

- Once data has moved up the hierarchy, keep it around
 - A <u>particular piece of data</u> is more likely to be accessed again in the near future than some random other piece of data

Locality Principles, in Detail

- Spatial Locality (locality in space)
 - If an address is referenced, <u>addresses that are close by</u> tend to be referenced soon

Temporal Locality (locality in time)

If an address is referenced, <u>that same address</u> tends to be referenced again soon

Lecture Outline

- Memory Hierarchy Basics
 - What is the Memory Hierarchy?
 - How does it impact data structure design?
- B-Trees
 - Goals and Design
 - B+ Tree Structure
 - B+ Tree Implementation: Find
 - B+ Tree Implementation: Add

Spatial Locality: Arrays vs. Linked Lists (1 of 3)

- Which has the potential to take advantage of spatial locality? Array vs Linked List?
 - As a simplification, assume each object allocated via Java's uses contiguous space

Node[] arr = new Node[100]

Nade head= new Node head.next = new Node head.next.next=new Node class Node Z Node next Value

Spatial Locality: Arrays vs. Linked Lists (2 of 3)

- An array benefits more than a linked list from spatial locality
 - Language (e.g., Java) implementation can put LL nodes anywhere, whereas an array is typically implemented as contiguous memory
 - Contiguous memory benefits from spatial locality
- Suppose 2²³ items of 2⁷ bytes each. They are stored on disk and the block size is 2¹⁰ bytes
 - An array needs 2²⁰ disk accesses
 - If "perfectly streamed", > 4 seconds
 - If "random places on disk", 8000 seconds (> 2 hours)
 - A linked list in the worst case needs 2²³ disk accesses
 - Assuming "random" placement around disk, >16 hours

Spatial Locality: Arrays vs. Linked Lists (3 of 3)

- However! "Array" doesn't necessarily mean "good"
 - Binary heaps "make big jumps" to percolate
 - Constantly loading/unloading different blocks from disk

What About BSTs? (1 of 2)

- Operations on balanced BSTs are O(log n)
 - Even for n = 2³⁹ (512 GB just for keys), isn't this ok?
- Big-Oh is a good start, but # disk accesses still matters:
 - Pretend those 2³⁹ nodes were in an AVL tree of height 55
 - Most of the nodes will be on disk
 - Tree is shallow, but it is still many gigabytes big
 - Entire *tree* cannot fit in memory
 - Even if memory holds the first 25 nodes on our path, we still potentially need 30 disk accesses if we are traversing the entire height of the tree

What about BSTs? (2 of 2)

If your data structure is mostly on disk, minimize disk accesses!

 In this scenario, a better data structure would exploit the block size and (relatively) fast memory access to *avoid disk accesses*

Lecture Outline

- Memory Hierarchy Basics
 - What is the Memory Hierarchy?
 - How does it impact data structure design?
- B-Trees
 - Goals and Design
 - B+ Tree Structure
 - B+ Tree Implementation: Find
 - B+ Tree Implementation: Add

Our B-Tree Goal

- Problem: A dictionary with so many items <u>most of it is on disk</u>
- Goal: A balanced tree (logarithmic height) that minimizes disk accesses

- Let's look at two design decisions that'll get us there
- * Let's An idea: Increase the branching factor of our tree
 - Each node

Reminder: a dictionary maps *keys* to *values*; an *item* or *data* refers to the (key, value) pair

Decision #1: M-ary Search Tree

- A search tree with branching factor M (instead of 2)
 - Each node has a key-sorted array of M children: Node []

M-1 keys define the M subtrees (ie, ranges) that we search through

Choose M to fit into a disk block: only 1 disk access for entire array!

Decision #1: M-ary Performance?

- * Runtime for find = NumHops * WorkPerHop
 - Balanced tree height is: $log_M n$ (M-ary) vs $log_2 n$ (binary)
 - Eg: M = 256 (= 2^8) and n = 2^{40} , M-ary makes 5 hops vs binary makes 40 hops
 - For each internal node, how to decide which child to take?
 - Binary: Less than vs greater than node's single key? 1 comparison
 - M-ary: In range 1? In range 2? In range 3?... In range M?
 - Linear search the Node[]: M comparisons
 - Binary search the Node[]: log_2n comparisons
- * Runtime for M-ary find:
 - ■O(log₂M log_Mn)

Decision #1: M-ary Order Property

- M-ary search tree's order property is the M-way extension of a BST's 2-way ordering property
 - Subtree between keys a and b contains the keys between them
 - le, *a* ≤ k < *b*

Decision #2: Key-only Internal Nodes

A Dictionary ADT stores key->value pairs; where should we store a key's <u>value</u>?

Decision #2: Key-only Internal Nodes

A Dictionary ADT stores key->value pairs; where should we store a key's <u>value</u>?

Lecture Outline

- Memory Hierarchy Basics
 - What is the Memory Hierarchy?
 - How does it impact data structure design?
- B-Trees
 - Goals and Design
 - B+ Tree Structure
 - B+ Tree Implementation: Find
 - B+ Tree Implementation: Add

B+ Tree Node Structure

Both the textbook and we refer to "B+ Trees" as "B-Trees", but "B-Trees" actually encompass several variants

- Two node types: internal and leaf
- Each internal node contains up to M-1 keys (for up to M children)
 - Does not store values, only keys
 - Function as "signposts"

- Each leaf node contains up to L items
 - Stores (key, value) pairs
 - As usual, we'll ignore the "along for the ride" value in our examples

B+ Tree Parameters

- Two parameters, one for each type of node:
 - *M* = # of children in an internal node
 - The ranges are defined by M-1 keys
 - L = # of <u>items</u> in a leaf node
- Picking *M* and *L* based on disk-block
 size maximizes B+ Tree's efficiency
 - Recommend M* ≈ diskBlockSize/<u>key</u>Size
 - Recommend L = diskBlockSize/(keySize + valueSize)
 - In practice, M >> L
 - Since typically sizeof(key) >> sizeof(value)

(sorted by key)

* More precisely, we recommend M = (diskBlockSize + keySize)/(keySize + pointerSize)

B+ Tree Structure

Internal nodes

- Have between $\lceil M/2 \rceil$ and M children; i.e., at least half full
- Reminder: no values, just keys

* Leaf nodes

- All leaves at the same depth
- Have between L/2 and L items; i.e., at least half full
- Reminder: keys and values

Root node – A Special Case!

- If tree has ≤ *L* items, root is a **leaf node**
 - Unusual; only occurs when starting up
- Else, root is an internal node and has between 2 and M children
 - · i.e., the "at least half full" condition does not apply

B+ Trees are Balanced (Enough)

- Not hard to show height h is logarithmic in number of items n
 - Let M > 2 (if M = 2, then a "linked list tree" is legal no good!)
 - Because all nodes are at least half full (except possibly the root) and all leaves are at the same level, the minimum number of items n for a height h>0 tree is

$$n \geq 2 \lceil M/2 \rceil^{h-1} \lceil L/2 \rceil$$

$$minimum number minimum items of leaves per leaf$$

B+ Trees are Shallower than AVL Trees

- Suppose we have 100,000,000 items
- Maximum height of AVL tree?
 - Recall S(h) = 1 + S(h-1) + S(h-2)
 - So: 37
- Maximum height of B+ Tree with M=128 and L=64?
 - Recall $n \ge 2 \lceil M/2 \rceil^{h-1} \lceil L/2 \rceil$
 - So: 5 (and 4 is more likely)

B+ Trees are Disk Friendly (1 of 2)

- Reduces number of disk accesses during find
 - Large M = shallower tree = potentially fewer accesses
 - Requires that <u>we pick M wisely</u>
 - Too large: multiple disk accesses to load a single internal node
 - Too small: tree could've been shallower
 - Binary search over M-1 keys insignificant compared to disk access
- Reduces unnecessary data transferred from disk
 - find wants <u>one value</u>; doesn't load "incorrect" values into memory
 - Only one disk access to bring (the single correct) value into memory: when we find the correct leaf node

B+ Trees are Disk Friendly (2 of 2)

- Maximizes temporal locality
 - Since typically sizeof(key) >> sizeof(value), can hold significantly more B+ Tree-style internal nodes in memory than BST-style nodes
 - B+ Tree-style internal nodes are used more often (they differentiate between a larger fraction of keys) than BST-style nodes, and therefore are more likely to be held in memory by the OS

Lecture Outline

- Memory Hierarchy Basics
 - What is the Memory Hierarchy?
 - How does it impact data structure design?
- B-Trees
 - Goals and Design
 - B+ Tree Structure
 - B+ Tree Implementation: Find
 - B+ Tree Implementation: Add

B+ Tree Find/Contains

- M-way extension of a BST's root-to-leaf recursive algorithm
 - At each internal node, do binary search on (up to) M-1 keys to determine which branch to take
 - At the **leaf** node, do binary search on the (up to) *L* items
 - Requires that keys are sorted in both internal and leaf nodes!
- Difference:
 - Since we <u>don't store value at internal</u> <u>nodes</u>, there is no "best case" of finding our value at the root node; must always traverse to the bottom of B+ Tree

Find/Contains Example

Notation:

- Internal nodes drawn horizontally
- Leaf nodes drawn vertically
- All nodes include empty cells
- Tree with M=4 (max #pointers in internal node) and L=5 (max #items in leaf node)
 - All internal nodes must have ≥2 children
 - All leaf nodes must have ≥3 items (but we are only showing keys)

Lecture Outline

- Memory Hierarchy Basics
 - What is the Memory Hierarchy?
 - How does it impact data structure design?
- B-Trees
 - Goals and Design
 - B+ Tree Structure
 - B+ Tree Implementation: Find
 - B+ Tree Implementation: Add

Add Example:

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38
M=3, L=3

Add Example: Answer (1 of 7)

Special case: the root is a leaf node

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38 M=3, L=3

Add Example: Answer (2 of 7)

Add Example: Answer (3 of 7)

Split the leaf again

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38 M=3, L=3

Add Example: Answer (4 of 7)

Add Example: Answer (5 of 7)

Split the parent (in this case, the root). Note that the median key **moves** into the parent (vs being copied)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38 M=3, L=3

Add Example: Answer (6 of 7)

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38 M=3, L=3

Add Example: Answer (7 of 7)

Split the leaf again

Add 3, 18, 14, 30, 32, 36, 15, 16, 12, 40, 45, 38 M=3, L=3