
CSE332, Spring 2021L09: AVL Trees

AVL Trees
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L09: AVL Trees

2

❖ In a binary min heap, repeatedly call add() on the following sequence
of elements. Do not use buildHeap()

▪ {4, 1, 5, 3}

▪ {1, 3, 4, 5}

❖ In a binary search tree, repeatedly call add() on the following
sequence of elements.

▪ {4, 1, 5, 3}

▪ {1, 3, 4, 5}

❖ What impact, if any, does the order of elements have on the resultant
trees’ structure and ordering?

CSE332, Spring 2021L09: AVL Trees

Announcements

❖ Projects are due at 11:59pm

▪ P1 had an extra day added; due tonight

❖ Fill out P2 partner survey tonight!

❖ Quiz 1’s question 3 (the one about spell prefixes)

3

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

4

CSE332, Spring 2021L09: AVL Trees

Why does BST height matter? (1 of 2)

❖ For a BST with n items:
▪ Randomized height is Θ(log n) – see text for proof

▪ Worst case height is Θ(n)

❖ Simple cases, such as inserting in order, lead to worst case
structure!

5

BST,
Randomized

BST,
Worst

Find Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Add Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Remove Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

CSE332, Spring 2021L09: AVL Trees

Why does BST height matter? (2 of 2)

❖ Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

▪ The resultant tree is a “linked list”

▪ What is the big-Oh aggregate runtime for n add()s of sorted input?

6

1

2

3

n2

(not a happy place)

Aggregate Runtime for n adds: O()

CSE332, Spring 2021L09: AVL Trees

Balancing a BST

❖ Solution: Require a Balance Condition that:
1. Ensures height is always O(log n)

2. Is easy to maintain

7

CSE332, Spring 2021L09: AVL Trees

Potential BST Balance Conditions

❖ Left and right subtrees of the root
have equal number of nodes

❖ Left and right subtrees of the root
have equal height

8

Too weak!
Height mismatch example:

Too weak!
Double chain example:

CSE332, Spring 2021L09: AVL Trees

The AVL Balance Condition (1 of 2)

❖ Left and right subtrees of the root
have equal number of nodes

❖ Left and right subtrees of the root
have equal height

❖ Left and right subtrees of every node
have heights differing by at most 1

9

CSE332, Spring 2021L09: AVL Trees

The AVL Balance Condition (2 of 2)

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1  balance(x)  1

Results:

❖ Ensures shallow depth: h ∈ Θ(log n)

▪ Will prove this by showing that an AVL tree of height h must have a
number of nodes exponential in h

❖ Efficient to maintain using rotations

10

Left and right subtrees of every node have
heights differing by at most 1

h = -1 (null)

h = 0

h = 1

CSE332, Spring 2021L09: AVL Trees

The AVL Tree Data Structure (1 of 2)

❖ Structural properties

▪ Binary tree property (0, 1, or 2 children)

▪ Heights of left and right subtrees for every node differ by at most 1

❖ Ordering property

▪ Same as for BST

11

4

131062

115

8

14127 9

15

CSE332, Spring 2021L09: AVL Trees

The AVL Tree Data Structure (2 of 2)

12

20

92 15

5

10

30

177

0

0 0

011

2 2

3 …

3

value

height

children

10 key

CSE332, Spring 2021

gradescope.com/courses/256241

L09: AVL Trees

❖ Are the following trees AVL trees?

A. No / No / No

B. Yes / No / No

C. Yes / Yes / No

D. Yes / Yes / Yes

E. Yes / No / Yes

13

111

84

6

10 12

7 111

84

6

5

2

7

2

51

84

6

11

10

7

9

CSE332, Spring 2021L09: AVL Trees

Height of an AVL Tree? (1 of 2)

❖ The “best case” AVL tree is a perfect tree

❖ What does the “worst case” AVL tree look like?

❖ Let S(h) = minimum # of nodes in an AVL tree of height h

▪ And also S(-1) = 0, S(0) = 1

▪ … so what is the expression for S(h)?

14

h = -1 (null)

h = 0

h = 1

CSE332, Spring 2021L09: AVL Trees

Minimal AVL Tree (height = 0)

15

h = -1 (null)

h = 0

h = 1

CSE332, Spring 2021L09: AVL Trees

Minimal AVL Tree (height = 1)

16

h = -1 (null)

h = 0

h = 1

CSE332, Spring 2021L09: AVL Trees

Minimal AVL Tree (height = 2)

17

CSE332, Spring 2021L09: AVL Trees

Minimal AVL Tree (height = 3)

18

CSE332, Spring 2021L09: AVL Trees

Minimal AVL Tree (height = 4)

19

CSE332, Spring 2021L09: AVL Trees

Height of an AVL Tree? (2 of 2)

❖ Let S(h) = minimum # of nodes in an AVL tree of height h

▪ And also S(-1) = 0, S(0) = 1

▪ … what is the expression for S(h)?

▪ S(h) = S(h-1) + S(h-2) + 1

❖ Solution of Recurrence: S(h)  1.62h

20

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

21

CSE332, Spring 2021L09: AVL Trees

Before We Prove It

❖ Good intuition from plots comparing:

1. S(h) computed directly from the definition

2. ((1+5)/2)h  1.62h

❖ S(h) is always bigger, up to trees with huge # of nodes

▪ Graphs aren’t proofs, so let’s prove it

22

CSE332, Spring 2021L09: AVL Trees

The Proof Outline

Let S(h) = the min # of nodes in an AVL tree of height h
▪ If we can prove that S(h) grows exponentially in h, then a tree with
n nodes has a logarithmic height

❖ Step 1: Define S(h) inductively using AVL property
▪ S(-1)=0, S(0)=1, S(1)=2

▪ S(h) = 1 + S(h-1) + S(h-2) for h  1

❖ Step 2: Show this recurrence grows really fast
▪ Similar to Fibonacci numbers

▪ Can prove for all h, S(h) > h – 1 where  is the golden ratio,
(1+5)/2  1.62

▪ Growing faster than 1.62h is “plenty exponential”

23

h-1h-2

h

CSE332, Spring 2021L09: AVL Trees

Interlude: The Golden Ratio

24

62.1
2

51


+
=

This is a special number

• Aside: Since the Renaissance, many artists and architects have
proportioned their work (e.g., length:height) to approximate the golden
ratio: If (a+b)/a = a/b, then a = b

• We will need one special arithmetic fact about  :

2= ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4

= (6 + 2*51/2)/4

= (3 + 51/2)/2

= 1 + (1 + 51/2)/2

= 1 + 

CSE332, Spring 2021L09: AVL Trees

The Proof (1 of 2)

Theorem: For all h  0, S(h) > h – 1

Proof: By induction on h

Base cases:

S(0) = 1 > 0 – 1 = 0

S(1) = 2 > 1 – 1  0.62

25

S(-1)=0, S(0)=1, S(1)=2

S(h)=1 + S(h-1) + S(h-2) for h  1

CSE332, Spring 2021L09: AVL Trees

The Proof (2 of 2)

Theorem: For all h  0, S(h) > h – 1

Proof: By induction on h

Inductive case (k > 1):

Show that S(k+1) > k+1–1, assuming S(k) > k–1

and S(k-1) > k-1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S

> 1 + (k – 1) + (k-1 – 1) by induction

= k + k-1 – 1 by arithmetic (1-1=0)

= k-1 ( + 1) – 1 by arithmetic (factor k-1)

= k-1 2 – 1 by special property of 

= k+1 – 1 by arithmetic (add exponents)
26

S(-1)=0, S(0)=1, S(1)=2

S(h)=1 + S(h-1) + S(h-2) for h  1

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

27

CSE332, Spring 2021L09: AVL Trees

AVL Find

❖ Surprise! You already know this one

28

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

29

CSE332, Spring 2021L09: AVL Trees

And Now for Some Bad News …

❖🎉🎉🎉 find() is O(log n)! 🎉🎉🎉

❖ But as we add() and remove elements(), we need to:

▪👎 Track heights

▪👎 Detect imbalance

▪👎 Restore balance

30

Is this tree AVL-balanced?
How about after insert(8)?

92

5

10

7

15

20

CSE332, Spring 2021L09: AVL Trees

AVL add(): Overall Approach

❖ Our overall algorithm looks like:

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf:

• The insertion may (or may not) have changed the node’s height

• Detect height imbalance and perform a rotation to restore balance

❖ Fact that makes it a bit easier:

▪ Imbalances only occur along the path from the new leaf to the root

▪ There must be a deepest element that is unbalanced

▪ After rebalancing this deepest node, every node above it is also
rebalanced

▪ Therefore, at most one node needs to be rebalanced

31

CSE332, Spring 2021L09: AVL Trees

AVL add(): Cases

❖ Let b be the deepest node where an imbalance occurs

❖ There are four cases to consider. The insertion is in the:
1. left subtree of the left child of b

2. right subtree of the left child of b

3. left subtree of the right child of b

4. right subtree of the right child of b

32

b

X
VU

Z

ca

1 2 3 4

CSE332, Spring 2021L09: AVL Trees

Case #1: Example

add(6)

add(3)

add(1)

❖ Last add() violates
balance property

❖ What is the only way to
fix this?

33

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

6

3

1

2

1

0

6

3

1

0

6
0

CSE332, Spring 2021L09: AVL Trees

Case #1 Fix: Apply “Single Rotation”

❖ Single rotation:

▪ Move child of unbalanced node into parent position

▪ Parent becomes the “other” child

34

3

1 6
00

1

AVL property violated here

6

3

0

1

2

1

CSE332, Spring 2021L09: AVL Trees

Case #1: Pseudocode

35

void RotateWithLeftChild(Node root) {

Node temp = root.left

root.left = temp.right

temp.right = root

root.height = max(root.right.height(),

root.left.height()) + 1

temp.height = max(temp.right.height(),

temp.left.height()) + 1

root = temp

} RotateWithLeftChild rotates the tree clockwise

a

X

Y

b

Z

root

temp

CSE332, Spring 2021L09: AVL Trees

Case #1: Why It Works (1 of 2)

❖ Node is imbalanced due to insertion somewhere in

left-left grandchild

❖ First we did the insertion, which would make b imbalanced

36

b

Z

Y

a

X

h h
h

h+1
h+2 b

Z

Y

a

X

h+1 h

h
h+2

h+3

Oval: a node in the tree
Triangle: a subtree

CSE332, Spring 2021L09: AVL Trees

Case #1: Why It Works (2 of 2)

❖ So we rotate at b, maintaining BST order: X < a < Y < b < Z

❖ Result:

▪ A single rotation restores balance at the formerly-imbalanced node

▪ Height is same as before insertion, so ancestors now balanced

37

b

Z

Y

a

X

h+1 h

h
h+2

h+3 a

ZY

b

h+1 h h

h+1

h+2

X

CSE332, Spring 2021L09: AVL Trees

Case #1: Another Example: add(16)

38

104

228

15

3 6

19

17 20

24

16

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

CSE332, Spring 2021L09: AVL Trees

Case #1: Another Example: add(16)

39

104

228

15

3 6

19

17 20

24

16

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

104 22

8

15

3 6

19

17

20 2416

CSE332, Spring 2021L09: AVL Trees

Case #1 ≈ Case #4

❖ Mirror image of left-left case, so you rotate the other way

▪ Exact same concept, but need different code

40

b

Z

Y

a

X

h h

h+1

h+1

h+2

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

a

ZY

X

h

h
h+1

h+3

b

h+2

RotateWithRightChild rotates the tree counter-clockwise

CSE332, Spring 2021L09: AVL Trees

Case #3: Example

Insert(1)

Insert(6)

Insert(3)

❖ Single rotations are not
enough for insertions into
the left-right subtree (or
the right-left subtree; ie,
case #2)

41

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

1
0

6

1

0

1

3

6

1

0

1

2

CSE332, Spring 2021L09: AVL Trees

Case #3: Wrong Fix #1

❖ First wrong idea: single rotation like we did for left-left

▪ Violates BST ordering property!

42

6

1 3

1

0 0

3

6

1

0

1

2

CSE332, Spring 2021L09: AVL Trees

Case #3: Wrong Fix #2

❖ Second wrong idea: single rotation on the child of the
unbalanced node

▪ Doesn’t actually fix anything!

43

3

6

1

0

1

2

6

3

1

0

1

2

CSE332, Spring 2021L09: AVL Trees

Case #3: Sometimes Two Wrongs Make a Right ☺

❖ First idea violated the BST ordering

❖ Second idea didn’t fix balance

❖ … but if we do both single rotations, starting with the second,
it works!

44

00

1

1 6
3

6

1

0

1

2

6

3

1

0

1

2

DoubleRotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

3

CSE332, Spring 2021L09: AVL Trees

Case #3: Why It Works

45

a

X

c

b

h-1

h

h

h

VU

h+1

h+2

h+3

Z

a

X

b

h-1

h+1h

h

V

U

h+2

h+3

Z

c

h b

X

h-1

h+1

h

h+1

VU

h+2

Z

c

h

a

h

CSE332, Spring 2021L09: AVL Trees

Case #3: Comments

❖ Height of subtree after rebalancing is the same as before insert

▪ So, no ancestor in the tree will need rebalancing

❖ Doesn’t have to be two rotations; can just move b to
grandparent’s position and put a, c, X, U, V, and Z in the only
legal positions for a BST

46

a

X

c

b

h-1

h

h

h

VU

h+1

h+2

h+3

Z

b

X

h-1

h+1

h

h+1

VU

h+2

Z

c

h

a

h

CSE332, Spring 2021L09: AVL Trees

Case #3: Pseudocode

47

void DoubleRotateWithRightChild(Node root) {

RotateWithLeftChild(root.right)

RotateWithRightChild(root)

}

CSE332, Spring 2021L09: AVL Trees

Case #3 ≈ Case #2

❖ Mirror image of right-left

▪ Again, no new concepts, only new code to write

48

c

h-1

h

hh

VU

h+1

h+2

h+3

Z

X

a

b

b

X

h-1

h+
1h

h+1

VU

h+2

Z

c

h

a

h

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

CSE332, Spring 2021L09: AVL Trees

AVL add(): Summary

❖ Insert as if a BST

❖ Check back up path for imbalance, which will be 1 of 4 cases:

1. node’s left-left grandchild is too tall

2. node’s left-right grandchild is too tall

3. node’s right-left grandchild is too tall

4. node’s right-right grandchild is too tall

❖ Only one case occurs because tree was balanced before insert

❖ After the appropriate rotation, the smallest-unbalanced
subtree has the same height as before insertion

▪ So all ancestors are now balanced

49

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

50

CSE332, Spring 2021L09: AVL Trees

Double Rotation: Example (1 of 3)

51

104

178

15

3 6

16

5

CSE332, Spring 2021L09: AVL Trees

Double Rotation: Example (2 of 3)

52

106

178

4

3

16

5

15

104

178

15

3 6

16

5

CSE332, Spring 2021L09: AVL Trees

Double Rotation: Example (3 of 3)

53

10

6 17

8

15

4

3

16

5

106

178

4

3

16

5

15

CSE332, Spring 2021L09: AVL Trees

Student Activity #1: add() into an AVL tree

❖ add(a)

❖ add(b)

❖ add(e)

❖ add(c)

❖ add(d)

54

CSE332, Spring 2021L09: AVL Trees

Student Activity #1: Answer

❖ add(a)

❖ add(b)

❖ add(e)

❖ add(c)

❖ add(d)

55

b

a d

7 e

CSE332, Spring 2021L09: AVL Trees

Student Activity #2: Single and Double Rotations

❖ Inserting which integer values would cause this tree to need a:

▪ Single Rotation?

▪ Double Rotation?

▪ No Rotation?

56

9

5

2

11

7 13

30

CSE332, Spring 2021L09: AVL Trees

Student Activity #2: Answer

❖ Inserting which integer values would cause this tree to need a:

▪ Single Rotation? 1, 14

▪ Double Rotation? 4, 12

▪ No Rotation? 6, 8, 10,

57

9

5

2

11

7 13

30

CSE332, Spring 2021L09: AVL Trees

Student Activity #3: Add Sequence (1 of 2)

❖ add(3)

▪ Is the resultant tree balanced?

▪ If not, how would you fix it?

58

2092

155

10

3017

12
0

0

100

1 2

3

0

CSE332, Spring 2021L09: AVL Trees

Student Activity #3: Add Sequence (2 of 2)

❖ Next, add(33)

▪ Is the resultant tree balanced?

▪ If not, how would you fix it?

59

2092

155

10

3017

12
1

0

100

2 2

3

0

3
0

CSE332, Spring 2021L09: AVL Trees

Student Activity #3: Answer

❖ Single rotation to the rescue!

60

0

2092

155

10

30173

12

33

1

0

200

2 3

3

10

3092

205

10

333

15

1

0

110

2 2

3

00

1712

0

CSE332, Spring 2021L09: AVL Trees

Student Activity #4: Harder Add Sequence (1 of 2)

❖ add(18)

▪ Is the resultant tree balanced?

▪ If not, how would you fix it?

61

2092

155

10

3017

12
1

0

100

2 2

3

0

3
0

CSE332, Spring 2021L09: AVL Trees

Student Activity #4: Harder Add Sequence (2 of 2)

❖ Single Rotation doesn’t work

62

1

1

020

2 3

3

0

2092

155

10

30173

12

1

1

200

2 3

3

00

18

0

3092

205

10

3

15

1712

0

0

18

CSE332, Spring 2021L09: AVL Trees

Student Activity #4: Answer (1 of 2)

❖ Double rotation, part 1

63

2092

155

10

30173

12

1

1

200

2 3

3

00

18

0

1792

155

10

20

30

3

12

1

0

200

2 3

3

10

18

0

CSE332, Spring 2021L09: AVL Trees

Student Activity #4: Answer (2 of 2)

❖ Double rotation, part 2

64

1792

155

10

20

30

3

12

1

0

200

2 3

3

10

18

0

2092

175

10

30123

15

1

0

110

2 2

3

00

18
0

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

65

CSE332, Spring 2021L09: AVL Trees

AVL Remove: The Easy Way

❖ The “easy way” is lazy deletion

66

20

92 15

5

10

30

177

0

0 0

011

2 2

3
…

3

value

height

children

10 key

true deleted?

CSE332, Spring 2021L09: AVL Trees

AVL Remove: The Hard Way

❖ We have several imbalance cases

▪ See Weiss, 3rd ed. for more details

67

CSE332, Spring 2021L09: AVL Trees

Lecture Outline

❖ AVL Tree

▪ Bounding a BST’s height

▪ (Proving the AVL tree’s height bound)

▪ Find

▪ Add

• (Add Exercises)

▪ Remove

▪ Wrapup

68

CSE332, Spring 2021L09: AVL Trees

AVL Tree Operations (1 of 2)

❖ AVL find:

▪ Same as BST find

▪ Worst-case complexity:

• Tree is balanced!

❖ AVL add:

▪ First BST add, then check balance and potentially “fix” the AVL tree

▪ Four different imbalance cases

▪ Worst-case complexity:

• Tree starts and ends balanced

• A rotation is O(1) and there’s an O(log n) path to root

69

CSE332, Spring 2021L09: AVL Trees

AVL Tree Operations (2 of 2)

❖ AVL remove

▪ We suggest lazy deletion

• Worst-case complexity:

▪ Deletion requires more rotations than insert; but worst-case
complexity still O(log n)

70

CSE332, Spring 2021L09: AVL Trees

Pros and Cons of AVL Trees

❖ Arguments for AVL trees:

▪ All operations are logarithmic worst-case because trees are always
balanced

▪ Height rebalancing adds no more than a constant factor to the
speed of add and remove

❖ Arguments against AVL trees:

▪ Difficult to program and debug

▪ Additional space for the height and deleted? fields

▪ Asymptotically faster, but rebalancing takes time

▪ Compared to other balanced BSTs (eg, Red-Black trees), the
constants aren’t great

▪ Most large data sets require database-like systems on disk, and thus
use other structures (e.g., B-trees, our next data structure)

71

