YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

AVL Trees

CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

W UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

> In a binary min heap, repeatedly call add () on the following sequence

of elements. Do not use buildHeap() |-]

n 3 Y
(4,1,5,3) 35 2

= {1, 3, 4,5} Z/ 5,

+ In a binary search tree, repeatedly call add () on the following
sequence of elements.
q / LI.\ ‘\

\

3

« What impact, if any, does the order of elements have on the resultant
trees’ structure and ordering?

= {4,1,5, 3} | 5 2 X
= {1,3,4,5}
Ts

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Announcements

+ Projects are due at 11:59pm
= P1 had an extra day added; due tonight

<« Fill out P2 partner survey tonight!

« Quiz 1’s question 3 (the one about spell prefixes)

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
® Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

W UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Why does BST height matter? (1 of 2)

BST, BST,
Randomized Worst

Find ©(h) aka ©(log N) ©(h) aka O(N)
Add ©(h) aka ©(log N) ©(h) aka O(N)
Remove ©(h) aka O(log N) ©(h) aka ©(N)

« For a BST with n items:
= Randomized height is O(log n) — see text for proof
= Worst case height is ©(n)

« Simple cases, such as inserting in order, lead to worst case
structure!

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Why does BST height matter? (2 of 2)

« Insertkeys 1, 2,3,4,5,6,7,8,9 into an empty BST
" The resultant tree is a “linked list”
= What is the big-Oh aggregate runtime for n add()s of sorted input?

S

Aggregate Runtime for n adds: O(n?)

(not a happy place)

F242+ | 4p = A (:Z\) é’OGyZ}

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Balancing a BST

« Solution: Require a Balance Condition that:
1. Ensures height is always O(log n)
2. s easy to maintain

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Potential BST Balance Conditions

+ Left and right subtrees of the root
have equal number of nodes

Too weak!
Height mismatch example: é

» Left and right subtrees of the root
have equal height
Too weak!
Double chain example:

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The AVL Balance Condition (1 of 2)

+ Left and right subtrees of_ewde
have heights differing by at most 1

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The AVL Balance Condition (2 of 2)

h=0 o
=y
Left and right subtrees of every node have
heights differing by at most 1

Definition: balance(node) = height(node.left) — height(node.right)
AVL property: for every node x, —1 <balance(x)<1

Results:

« Ensures shallow depth: h € ©(log n)

= Will prove this by showing that an AVL tree of height h must have a
number of nodes exponential in h

<« Efficient to maintain using rotations

10

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The AVL Tree Data Structure (1 of 2)

<« Structural properties
®= Binary tree property (0, 1, or 2 children)
= Heights of left and right subtrees for every node differ by at most 1

« Ordering property A

Same as for BST
&) O @
D OO0 W

19

11

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The AVL Tree Data Structure (2 of 2)

10 key
3 o value
10 e —
| 3 heﬂghg::D
2 2

/ | \| children
5 1]_K/gll\\ 0 /, ‘\

12

W UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

« Are the following trees AVL trees? /3¢
> \/

n No/No/No]O>(O
8. Yes/No/No

c. Yes/Yes/No

p. Yes/Yes/Yes

Yes /No / Yes

W UNIVERSITY of WASHINGTON LO9: AVL Trees

CSE332, Spring 2021

Height of an AVL Tree? (1 of 2)

h=0 o
o ” H h=1 ’
« The “best case” AVL tree is a perfect tree ®

«» What does the “worst case” AVL tree look like?

« Let S (h) = minimum # of nodes in an AVL tree of height h
" AndalsoS(-1) = 0, S(0) =1

= ..so what is the expression for S (h) ?

14

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Minimal AVL Tree (height = 0) h:-o °

O

15

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Minimal AVL Tree (height = 1) hz-o °

16

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Minimal AVL Tree (height = 2)

17

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Minimal AVL Tree (height = 3)

h=2 ma v \

18

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Minimal AVL Tree (height = 4)
I

———

N
i c
4

2

-——

g
2,
2 4

19

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Height of an AVL Tree? (2 of 2)

« Let S (h) = minimum # of nodes in an AVL tree of height h
" AndalsoS(-1) = 0, S(0) =1
= ... what is the expression for S (h) ?

"S(h) = S(h-1) + S(h-2) + 14’\ %
‘e coo

+ Solution of Recurrence: S (h) ~ 1.62%

20

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
= Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

21

W UNIVERSITY of WASHINGTON

LO9: AVL Trees

Before We Prove It

0’0

0‘0

Good intuition from plots comparing:
1. S (h) computed directly from the definition

2. ((1+V5)/2)h

~ 1.62%

CSE332, Spring 2021

S (h) is always bigger, up to trees with huge # of nodes
= Graphs aren’t proofs, so let’s prove it

400

350

300

250

200

150

100

50

4

/
/
/

A
g

e

012 3 4 56 7 8 91011

=—&#—minimum number of
nodes in tree

== ({1+sqrt(5)}/2}*h

120000000

100000000

80000000

60000000

40000000

20000000

0

== minimum number of

p .
nodesin tree

T ——((1+sqrt(5))/2)*h

—

03 6 9121518212427303336

22

W UNIVERSITY of WASHINGTON

LO9: AVL Trees

CSE332, Spring 2021

The Proof Outline

Let S (h) =the min # of nodes in an AVL tree of height h

= |f we can prove that S (h) grows exponentially in h, then a tree with
n nodes has a logarithmic height

+ Step 1: Define S (k) inductively using AVL property
"S(-1)=0, S(0)=1, S(1)=2
" S(h) =1 + S(h-1) + S(h-2) forh>1 h-2 h-1

<+ Step 2: Show this recurrence grows really fast
= Similar to Fibonacci numbers
® Can prove forall h, S (h)
(1+V5) /2~ 1.62

= Growing faster than 1. 62%is “plenty exponential”

> ¢" — 1 where ¢ is the golden ratio,

23

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Interlude: The Golden Ratio . a b

<

~1.62 a+b

a+bistoaasaistob

¢

This is a special number

Aside: Since the Renaissance, many artists and architects have

proportioned their work (e.g., length:height) to approximate the golden
ratio: If (a+b) /a = a/b,thena = ¢b

We will need one special arithmetic fact about ¢ :
0°= ((1+5%/2) /2)?

1 + 2*5Y2 + 5)/4

6 + 2*51/2) /4

_1+\@ ~ v -

24

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The Proof (1 0f2) [sW=1 ¢ 3

Theorem: Forallh>0,S (h) > ¢" - 1
Proof: By induction on h

Base cases:
S(0) =1 >¢° -1 =0
S(1) =2 >¢! -1 =~ 0.62

25

W UNIVERSITY of WASHINGTON

LO9: AVL Trees

CSE332, Spring 2021

The Proof (2 of 2)

Theorem: Forallh>0,S (h) > ¢" - 1

Proof: By induction on h

Inductive case (k > 1):

Show that S (k+1) > ¢*"1-1, assuming S (k) > ¢*-1

and S (k-1) > ¢t - 1

S(k+1) =1+ S(k) + S(k-1)
> 1+ (¢4 = 1) + (91— 1)
= Ok + Pl — 1
=41 (9 +1) -1
— (I)k-l 02— 1
= g+t -1

by definition of S

by induction

by arithmetic (1-1=0)

by arithmetic (factor ¢1)
by special property of ¢

by arithmetic (add exponents)

26

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
= Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

27

W UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

AVL Find

« Surprise! You already know this one

Nl< ae BSTS!

28

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
= Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

29

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

And Now for Some Bad News ...
« B B find)isO(logn)! 2 B

+ But as we add() and remove elements(), we need to:

= &1 Track heights Noe houw

= &7 Detect imbalance MJF\!\% K@PWS
= &1 Restore balance Yo b&w(

Is this tree AVL-balanced? 9
How about after insert(8)?

o@
30

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

AVL add(): Overall Approach

« Our overall algorithm looks like:
1. Insertthe new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf:
The insertion may (or may not) have changed the node’s height
Detect height imbalance and perform a rotation to restore balance

+ Fact that makes it a bit easier:
® Imbalances only occur along the path from the new leaf to the root
® There must be a deepest element that is unbalanced

= After rebalancing this deepest node, every node above it is also
rebalanced

= Therefore, at most one node needs to be rebalanced

31

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

AVL add(): Cases

« Let b be the deepest node where an imbalance occurs

«» There are four cases to consider. The insertion is in the:
1. left subtree of the left child of b

2. right subtree of the left child of b O}ef\t\e
3.
4.

left subtree of the right child of b
right subtree of the right child of b

AV Aree

32

YA UNIVERSITY of WASHINGTON

Case #1: Example

add(6)
add(3)
add(1)

7

<« Last add() violates
balance property

« What is the only way to
fix this?

LO9: AVL Trees

CSE332, Spring 2021

1

2.
3.
4.

The insertion is in the:

left subtree of the left child of b
right subtree of the left child of b
left subtree of the right child of b
right subtree of the right child of b

33

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #1 Fix: Apply “Single Rotation”
+ Single rotation:
®= Move child of unbalanced node into parent position
= Parent becomes the “other” child
AVL property violated here

sz &)
1 ‘
1
0 0

1

0

34

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #1: Pseudocode

Rotale Riohd

A4
void otateWithLeftChiiéZ}ode root) {
Node temp = root.left

root.left = temp.right
temp.right = root
root.height = max(root.right.height (

14

)
root.left.height()) + 1
temp.height = max(temp.right.height (),
temp.left.height()) + 1

root = temp

} [RotateWithLeftChild rotates the tree clockwise }

35

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Case #1: Why It Works (1 of 2)

CSE332, Spring 2021

Oval: a node in the tree
Triangle: a subtree

+» Node is imbalanced due to insertion somewhere in

left-left grandchild

« First we did the insertion, which would make b imbalanced

36

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #1: Why It Works (2 of 2)

+ So we rotate at b, maintaining BST order: X<a<Y<b<Z

« Result:
= A single rotation restores balance at the formerly-imbalanced node
q% " Height is same as before insertion, so ancestors now balanced

37

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #1: Another Example: add(16)

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

38

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #1: Another Example: add(16)

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

39

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The insertion is in the:

Case #1 = Case #4 1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

< Mirror image of left-left case, so you rotate the other way

® Exact same concept, but need different code

RotateWithRightChild rotates the tree counter-clockwise]

& Roge [k o

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The insertion is in the:

Case #3: Example 1. left subtree of the left child of b
2 right subtree of the left child of b
3. left subtree of the right child of b
4

Insert(1) right subtree of the right child of b
Insert(6) 0 . ,
Insert(3) 1 1 1

<« Single rotations are not 0
enough for insertions into e
the left-right subtree (or
the right-left subtree; ie,
case #2)

41

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #3: Wrong Fix #1

« First wrong idea: single rotation like we did for left-left
= Violates BST ordering property!

42

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #3: Wrong Fix #2

+ Second wrong idea: single rotation on the child of the
unbalanced node

= Doesn’t actually fix anything!

43

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #3: Sometimes Two Wrongs Make a Right ©

(4

<« First idea violated the BST ordering
Second idea didn’t fix balance

/7
0.0

/7
0.0

... but if we do both single rotations, starting with the second,
it works!

DoubleRotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

44

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #3: Why It Works

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #3: Comments

+ Height of subtree after rebalancing is the same as before insert

® So, no ancestor in the tree will need rebalancing

+ Doesn’t have to be two rotations; can just move b to
grandparent’s position and put a, ¢, X, U, V, and Z in the only
legal positions for a BST

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Case #3: Pseudocode

void DoubleRotateWithRightChild (Node root) {
RotateWithLeftChild (root.right)
RotateWithRightChild (root)

oan oﬁéoi)uﬁ b@dﬂéﬁ’*\e @O\(T{XS dMEGHﬁ

47

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

The insertion is in the:

Case #3 = Case #2 |_>1. left subtree of the left child of b
2 right subtree of the left child of b

>3: left subtree of the right child of b
< Mirror image of right-left [—>4. right subtree of the right child of b

= Again, no new concepts, only new code to write

48

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

AVL add(): Summary

« Insert as if a BST

+ Check back up path for imbalance, which will be 1 of 4 cases:
1. node’s left-left grandchild is too tall
2. node’s left-right grandchild is too tall
3. node’s right-left grandchild is too tall
4. node’s right-right grandchild is too tall

« Only one case occurs because tree was balanced before insert

<« After the appropriate rotation, the smallest-unbalanced
subtree has the same height as before insertion

= So all ancestors are now balanced

49

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
= Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

50

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Double Rotation: Example (%‘of 3)

51

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Double Rotation: Example (2 of 3)

52

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Double Rotation: Example (3 of 3)

W UNIVERSITY of WASHINGTON LO9: AVL Trees

Student Activity #1: add() into an AVL tree

<+ add(a)
+ add(b)
<+ add(e)
<+ add(c)
+ add(d)

CSE332, Spring 2021

54

W UNIVERSITY of WASHINGTON LO9: AVL Trees

Student Activity #1: Answer

<+ add(a)
+ add(b)
<+ add(e)
<+ add(c)
+ add(d)

CSE332, Spring 2021

55

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #2: Single and Double Rotations

+ Inserting which integer values would cause this tree to need a:
= Single Rotation? o

= Double Rotation? ° @
) @O O
@ &

= No Rotation?

56

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #2: Answer

+ Inserting which integer values would cause this tree to need a:
= Single Rotation? 1, 14 e

= Double Rotation? 4, 12 0 @

= No Rotation? 6, 8, 10,

57

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #3: Add Sequence (1 of 2)

<« add(3)

® |s the resultant tree balanced? @
= If not, how would you fix it? A/'\A
1 2

58

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #3: Add Sequence (2 of 2)

+ Next, add(33)
" |s the resultant tree balanced? 3
= If not, how would you fix it?
2 2
1 /GD\ 0 1
0

® O @
® &

59

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #3: Answer

<« Single rotation to the rescue!

60

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #4: Harder Add Sequence (1 of 2)

<+ add(18)
" |s the resultant tree balanced? 3
= If not, how would you fix it?
2 2
1 /GD\ 0 1
0

® O @
® &

61

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #4: Harder Add Sequence (2 of 2)

<« Single Rotation doesn’t work

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #4: Answer (1 of 2)

« Double rotation, part 1

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Student Activity #4: Answer (2 of 2)

« Double rotation, part 2

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
= Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

65

CSE332, Spring 2021

W UNIVERSITY of WASHINGTON LO9: AVL Trees

AVL Remove: The Easy Way

« The “easy way” is lazy deletion

10 key
value
true deletedﬂ
3 height
children

66

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

AVL Remove: The Hard Way

+» We have several imbalance cases
= See Weiss, 3™ ed. for more details

67

YA UNIVERSITY of WASHINGTON LO9: AVL Trees

Lecture Outline

« AVL Tree
= Bounding a BST’s height
= (Proving the AVL tree’s height bound)
" Find
= Add
- (Add Exercises)
" Remove
" Wrapup

CSE332, Spring 2021

68

YA UNIVERSITY of WASHINGTON

LO9: AVL Trees

AVL Tree Operations (1 of 2)

+ AVL find:
= Same as BST find @ C\f\\ S

= Worst-case complexity:

- Treeis balanced! OO con &\SO ‘Satj 900& Y\>

+ AVL add:

® First BST add, then check balance and potentially “fix” the AVL tree
® Four different imbalance cases

= Worst-case complexity:
- Tree starts and ends balanced

- Arotation is O(1) and there’s an O(log n) path to root

69

CSE332, Spring 2021

LO9: AVL Trees CSE332, Spring 2021

YA UNIVERSITY of WASHINGTON

AVL Tree Operations (2 of 2)

<~ AVL remove

= We suggest lazy deletion B

- Worst-case complexity: Q(
= Deletion requires more rotat s than insert; but worst-case

complexity still O(log n)

CHAPTER 4/TREES
Deletion in AvL trees is somewhat more complicated than insertion, and is left as an
exercise. Lazy deletion is probably the best strategy if deletions are relatively infrequent

4.5. Splay Trees
We now describe a relatively simple data structure, known as a splay tree, that guarantees

70

YA UNIVERSITY of WASHINGTON LO9: AVL Trees CSE332, Spring 2021

Pros and Cons of AVL Trees

« Arguments for AVL trees:

= All operations are logarithmic worst-case because trees are always
balanced

®= Height rebalancing adds no more than a constant factor to the
speed of add and remove

« Arguments against AVL trees:
= Difficult to program and debug
= Additional space for the height and deleted? fields
= Asymptotically faster, but rebalancing takes time

" Compared to other balanced BSTs (eg, Red-Black trees), the
constants aren’t great

® Most large data sets require database-like systems on disk, and thus
use other structures (e.g., B-trees, our next data structure)

71

