AVL Trees
 CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Hamsa Shankar Nachiket Karmarkar

Patrick Murphy
Richard Jiang
Winston Jodjana

-ll gradescope

* In a binary min heap, repeatedly call add () on the following sequence of elements. Do not use buildHeap()
- $\{4,1,5,3\}$
- $\{1,3,4,5\}$

* In a binary search tree, repeatedly call add () on the following sequence of elements.
- $\{4,1,5,3\}$
- $\{1,3,4,5\}$

* What impact, if any, does the order of elements have on the resultant trees' structure and ordering?

Announcements

* Projects are due at 11:59pm
- P1 had an extra day added; due tonight
* Fill out P2 partner survey tonight!
* Quiz 1's question 3 (the one about spell prefixes)

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

Why does BST height matter? (1 of 2)

	BST, Randomized	BST, Worst
Find	$\Theta(h)$ aka $\Theta(\log N)$	$\Theta(h)$ aka $\Theta(N)$
Add	$\Theta(h)$ aka $\Theta(\log N)$	$\Theta(h)$ aka $\Theta(N)$
Remove	$\Theta(h)$ aka $\Theta(\log N)$	$\Theta(h)$ aka $\Theta(N)$

\% For a BST with n items:

- Randomized height is $\Theta(\log n)$ - see text for proof
- Worst case height is $\Theta(n)$
. Simple cases, such as inserting in order, lead to worst case structure!

Why does BST height matter? (2 of 2)

* Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- The resultant tree is a "linked list"
- What is the big-Oh aggregate runtime for n add()s of sorted input?

Aggregate Runtime for n adds: $O\left(n^{2}\right)$

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2} \in O\left(n^{2}\right)
$$

Balancing a BST

* Solution: Require a Balance Condition that:

1. Ensures height is always $\mathrm{O}(\log \mathrm{n})$
2. Is easy to maintain

Potential BST Balance Conditions

* Left and right subtrees of the root have equal number of nodes

Too weak!
Height mismatch example:

* Left and right subtrees of the root have equal height

Too weak!
Double chain example:

The AVL Balance Condition (1 of 2)

* Left and right subtrees of the root have equal number of nodes

* Left and right subtrees of the root have equal height
* Left and right subtrees of every node have heights differing by at most 1

The AVL Balance Condition (2 of 2)

$$
\begin{aligned}
& \text { Left and right subtrees of every node have } \\
& \text { heights differing by at most } 1
\end{aligned}
$$

Definition: balance(node) $=$ height(node.left) - height(node.right) AVL property: for every node $\boldsymbol{x}, \mathbf{- 1} \leq$ balance $(x) \leq 1$

Results:

* Ensures shallow depth: $h \in \Theta(\log n)$
- Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
* Efficient to maintain using rotations

The AVL Tree Data Structure (1 of 2)

* Structural properties
- Binary tree property (0,1 , or 2 children)
- Heights of left and right subtrees for every node differ by at most 1
* Ordering property
- Same as for BST

The AVL Tree Data Structure (2 of 2)

*ll gradescope

* Are the following trees AVL trees?

A. No / No / No
B. $\mathrm{Yes} / \mathrm{No} / \mathrm{No}$
c. Yes / Yes / No
d. Yes / Yes / Yes
e. Yes / No / Yes

$10>6$

Height of an AVL Tree? (1 of 2)

* The "best case" AVL tree is a perfect tree
*What does the "worst case" AVL tree look like?
* Let $S(h)=$ minimum \# of nodes in an AVL tree of height h
- And also $S(-1)=0, S(0)=1$
- ... so what is the expression for $S(h)$?

Minimal AVL Tree (height = 0)

$h=-1$
$h=0$
$h=1$

Minimal AVL Tree (height = 1)

$h=-1 \quad$ (null)
$h=0$
$h=1$

Minimal AVL Tree (height = 2)

Minimal AVL Tree (height = 3)

Minimal AVL Tree (height = 4)

Height of an AVL Tree? (2 of 2)

* Let $S(h)=$ minimum \# of nodes in an AVL tree of height h
- And also $S(-1)=0, S(0)=1$
- ... what is the expression for $S(h)$?
- $S(h)=S(h-1)+S(h-2)+14$ the root
* Solution of Recurrence: $S(h) \approx 1.62^{h}$

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

Before We Prove It

* Good intuition from plots comparing:

1. $S(h)$ computed directly from the definition
2. $((1+\sqrt{5}) / 2)^{h} \approx 1.62^{h}$

* $S(h)$ is always bigger, up to trees with huge \# of nodes
- Graphs aren't proofs, so let's prove it

The Proof Outline

Let $S(h)=$ the $\min \#$ of nodes in an AVL tree of height h

- If we can prove that $S(h)$ grows exponentially in h, then a tree with n nodes has a logarithmic height
* Step 1: Define $S(h)$ inductively using AVL property
- $S(-1)=0, S(0)=1, S(1)=2$
- $S(h)=1+S(h-1)+S(h-2)$ for $h \geq 1$
* Step 2: Show this recurrence grows really fast

- Similar to Fibonacci numbers
- Can prove for all $h, S(h)>\phi^{h}-1$ where ϕ is the golden ratio, $(1+\sqrt{ } 5) / 2 \approx 1.62$
- Growing faster than 1.62^{h} is "plenty exponential"

Interlude: The Golden Ratio

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

This is a special number

- Aside: Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio: If $(a+b) / a=a / b$, then $a=\phi b$
- We will need one special arithmetic fact about ϕ :

$$
\begin{aligned}
\phi^{2} & =\left(\left(1+5^{1 / 2}\right) / 2\right)^{2} \\
& =\left(1+2 * 5^{1 / 2}+5\right) / 4 \\
& =\left(6+2 * 5^{1 / 2}\right) / 4 \\
& =\left(3+5^{1 / 2}\right) / 2 \\
& =1+\left(1+5^{1 / 2}\right) / 2 \\
& =1+\phi
\end{aligned}
$$

The Proof (1 of 2)
 $S(-1)=0, \quad S(0)=1, \quad S(1)=2$
 $S(h)=1+S(h-1)+S(h-2)$ for $h \geq 1$

Theorem: For all $h \geq 0, S(h)>\phi^{h}-1$
Proof: By induction on h

Base cases:

$$
\begin{aligned}
& S(0)=1>\phi^{0}-1=0 \\
& S(1)=2>\phi^{1}-1 \approx 0.62
\end{aligned}
$$

The Proof (2 of 2)
 $S(-1)=0, \quad S(0)=1, \quad S(1)=2$
 $S(h)=1+S(h-1)+S(h-2)$ for $h \geq 1$

Theorem: For all $h \geq 0, S(h)>\phi^{h}-1$
Proof: By induction on h

Inductive case ($k>1$):
Show that $S(k+1)>\phi^{k+1}-1$, assuming $S(k)>\phi^{k}-1$ and $S(k-1) \quad>\phi^{k-1}-1$

$$
S(k+1)=1+S(k)+S(k-1) \quad \text { by definition of } S
$$

$>1+\left(\phi^{k}-1\right)+\left(\phi^{k-1}-1\right) \quad$ by induction
$=\phi^{k}+\phi^{k-1}-1$
$=\phi^{k-1}(\phi+1)-1$
$=\phi^{k-1} \phi^{2}-1$
$=\phi^{k+1}-1$
by arithmetic (1-1=0)
by arithmetic (factor ϕ^{k-1})
by special property of ϕ
by arithmetic (add exponents)

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

AVL Find

* Surprise! You already know this one

AVIs are BETs!

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

And Now for Some Bad News ．．．
＊find（）is $\mathrm{O}(\log \mathrm{n})$ ！
＊But as we add（）and remove elements（），we need to：

- 悓 Track heights
- 目 Detect imbalance
- 目 Restore balance

Is this tree AVL－balanced？
How about after insert（8）？

AVL add(): Overall Approach

* Our overall algorithm looks like:

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf:

- The insertion may (or may not) have changed the node's height
- Detect height imbalance and perform a rotation to restore balance
* Fact that makes it a bit easier:
- Imbalances only occur along the path from the new leaf to the root
- There must be a deepest element that is unbalanced
- After rebalancing this deepest node, every node above it is also rebalanced
- Therefore, at most one node needs to be rebalanced

AVL add(): Cases

* Let b be the deepest node where an imbalance occurs
* There are four cases to consider. The insertion is in the:

1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

Case \#1: Example

add(6)
add(3)
add(1)

* Last add() violates balance property
* What is the only way to fix this?

Case \#1 Fix: Apply "Single Rotation"

* Single rotation:
- Move child of unbalanced node into parent position
- Parent becomes the "other" child

AVL property violated here

Case \#1: Pseudocode

Rotate Right

```
void RotateWithLeftChild(Dode root) {
    Node temp = root.left
    root.left = temp.right
    temp.right = root
    root.height = max(root.right.height(),
        root.left.height()) + 1
    temp.height = max(temp.right.height(),
        temp.left.height()) + 1
    root = temp
```


Case \#1: Why It Works (1 of 2)

Oval: a node in the tree Triangle: a subtree

* Node is imbalanced due to insertion somewhere in left-left grandchild
* First we did the insertion, which would make \mathbf{b} imbalanced

Case \#1: Why It Works (2 of 2)

* So we rotate at b , maintaining BST order: $\mathrm{X}<\mathrm{a}<\mathrm{Y}<\mathrm{b}<\mathrm{Z}$
* Result:
- A single rotation restores balance at the formerly-imbalanced node
- Height is same as before insertion, so ancestors now balanced

Case \#1: Another Example: add(16)

The insertion is in the:

1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

Case \#1: Another Example: add(16)

The insertion is in the:

1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

Case \#1 \approx Case \#4

The insertion is in the:

1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

* Mirror image of left-left case, so you rotate the other way
- Exact same concept, but need different code

RotateWithRightChild rotates the tree counter-clockwise

Case \#3: Example

Insert(1)
Insert(6)
Insert(3)

The insertion is in the:

1. left subtree of the left child of b 2. right subtree of the left child of b
2. left subtree of the right child of b
3. right subtree of the right child of b

* Single rotations are not enough for insertions into the left-right subtree (or the right-left subtree; ie, case \#2)

Case \#3: Wrong Fix \#1

* First wrong idea: single rotation like we did for left-left
- Violates BST ordering property!

Case \#3: Wrong Fix \#2

* Second wrong idea: single rotation on the child of the unbalanced node
- Doesn't actually fix anything!

Case \#3: Sometimes Two Wrongs Make a Right ;)

* First idea violated the BST ordering
* Second idea didn't fix balance
* ... but if we do both single rotations, starting with the second, it works!

DoubleRotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Case \#3: Why It Works

Case \#3: Comments

* Height of subtree after rebalancing is the same as before insert
- So, no ancestor in the tree will need rebalancing
* Doesn't have to be two rotations; can just move b to grandparent's position and put $\mathrm{a}, \mathrm{c}, \mathrm{X}, \mathrm{U}, \mathrm{V}$, and Z in the only legal positions for a BST

Case \#3: Pseudocode

```
void DoubleRotateWithRightChild(Node root) {
    RotateWithLeftChild(root.right)
    RotateWithRightChild(root)
}
```

can also just update the pointers directly

Case \#3 \approx Case \#2

* Mirror image of right-left

The insertion is in the:
$\rightarrow 1$. left subtree of the left child of b 72 . right subtree of the left child of b 3. left subtree of the right child of b right subtree of the right child of b

- Again, no new concepts, only new code to write

AVL add(): Summary

* Insert as if a BST
* Check back up path for imbalance, which will be 1 of 4 cases:

1. node's left-left grandchild is too tall
2. node's left-right grandchild is too tall
3. node's right-left grandchild is too tall
4. node's right-right grandchild is too tall

* Only one case occurs because tree was balanced before insert
* After the appropriate rotation, the smallest-unbalanced subtree has the same height as before insertion
- So all ancestors are now balanced

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

Double Rotation: Example (1 of 3)

Double Rotation: Example (2 of 3

Double Rotation: Example (3 of 3)

Student Activity \#1: add() into an AVL tree

* add(a)
* add(b)
* add(e)
* add(c)
* add(d)

Student Activity \#1: Answer

* add(a)
* add(b)
* add(e)
* add(c)
* add(d)

Student Activity \#2: Single and Double Rotations

* Inserting which integer values would cause this tree to need a:
- Single Rotation?
- Double Rotation?
- No Rotation?

Student Activity \#2: Answer

* Inserting which integer values would cause this tree to need a:
- Single Rotation? 1, 14
- Double Rotation? 4, 12
- No Rotation? 6, 8, 10,

Student Activity \#3: Add Sequence (1 of 2)

* add(3)
- Is the resultant tree balanced?
- If not, how would you fix it?

Student Activity \#3: Add Sequence (2 of 2)

* Next, add(33)
- Is the resultant tree balanced?
- If not, how would you fix it?

Student Activity \#3: Answer

* Single rotation to the rescue!

Student Activity \#4: Harder Add Sequence (1 of 2)

* add(18)
- Is the resultant tree balanced?
- If not, how would you fix it?

Student Activity \#4: Harder Add Sequence (2 of 2)

* Single Rotation doesn't work

Student Activity \#4: Answer (1 of 2)

* Double rotation, part 1

Student Activity \#4: Answer (2 of 2)

* Double rotation, part 2

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

AVL Remove: The Easy Way

* The "easy way" is lazy deletion

AVL Remove: The Hard Way

* We have several imbalance cases
- See Weiss, $3^{\text {rd }}$ ed. for more details

Lecture Outline

* AVL Tree
- Bounding a BST's height
- (Proving the AVL tree's height bound)
- Find
- Add
- (Add Exercises)
- Remove
- Wrapup

AVL Tree Operations (1 of 2)

* AVL find:
- Same as BST find $\theta(h)$
- Worst-case complexity:
- Tree is balanced!

* AVL add:
" First BST add, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases
- Worst-case complexity:
- Tree starts and ends balanced
- A rotation is $\mathrm{O}(1)$ and there's an $\mathrm{O}(\log \mathrm{n})$ path to root

AVL Tree Operations (2 of 2)

* AVL remove
- We suggest lazy deletion
- Worst-case complexity: $\theta(\log n)$
- Deletion requires more rotations than insert; but worst-case complexity still O(log n)
4.5. Splay Trees

Pros and Cons of AVL Trees

* Arguments for AVL trees:
- All operations are logarithmic worst-case because trees are always balanced
- Height rebalancing adds no more than a constant factor to the speed of add and remove
* Arguments against AVL trees:
- Difficult to program and debug
- Additional space for the height and deleted? fields
- Asymptotically faster, but rebalancing takes time
- Compared to other balanced BSTs (eg, Red-Black trees), the constants aren't great
- Most large data sets require database-like systems on disk, and thus use other structures (e.g., B-trees, our next data structure)

