
CSE332, Spring 2021L08: BST

Binary Search Trees
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021L08: BST

Announcements

❖ Quiz 1 is due 11am PDT (not midnight!) tomorrow

❖ Also tomorrow: P2 partner matching survey

▪ Must fill out even if you keep the same partner

❖ Thanks to your TAs, P1 is now due FRIDAY at 8pm PDT

▪ Late policy is percentage-off, not late days

❖ We are always available for 1:1 meetings! Let us know how we
can help!

2

CSE332, Spring 2021

gradescope.com/courses/256241

L08: BST

❖ For a binary tree of height h:

▪ max # of leaves:

▪ max # of nodes:

▪ min # of leaves:

▪ min # of nodes:

❖ Bonus question: What is the difference between a plain binary tree, a
binary search tree, and a binary min-heap tree?

3

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Floyd’s buildHeap

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

4

CSE332, Spring 2021L08: BST

buildHeap

❖ buildHeap() takes an array of size N and applies the heap-
ordering principle to it

▪ Faster than naïve call-add()-N-times algorithm

❖ Intuition:

▪ Start in the middle of the array (ie, the first non-leaf node) and work
backwards (ie, up the tree)

▪ Percolate down to fix each node’s position relative to its valid
subheaps

❖ Correctness and Efficiency:

▪ Can prove correctness inductively

▪ MostpercolateDown calls don’t “go far”, summation shows Θ(n)

5

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Floyd’s buildHeap

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

6

CSE332, Spring 2021L08: BST

❖ For a dictionary with n key/value pairs, what is the runtime for:

❖ * Note: If we allow duplicates keys to be inserted, you could do these in O(1)
because you do not need to check for a key’s existence before insertion

insert find delete

Unsorted linked list O(1)* O(n) O(n)

Unsorted array O(1)* O(n) O(n)

Sorted linked list O(n) O(log n) O(n)

Sorted array O(n) O(log n) O(n)

Dictionary ADT: Data Structures

8

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

CSE332, Spring 2021L08: BST

Dictionary ADT: Better Data Structures

❖ We will spend the next several lectures looking at dictionaries:

▪ Binary Search Trees

▪ AVL trees

• Binary search trees with guaranteed balancing

▪ B-Trees

• Also always balanced, but different and shallower

• “B” != “Binary”; B-Trees generally have large branching factor

▪ Hash Tables

• Not tree-like at all

❖ Skipping: Other balanced binary search trees

▪ Eg, red-black tree (and LLRBs), splay tree

9

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Floyd’s buildHeap

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

10

CSE332, Spring 2021L08: BST

Binary Tree

❖ A Binary Tree is empty or
▪ a root (with item)

▪ a left subtree (maybe empty)

▪ a right subtree (maybe empty)

❖ Representation:

❖ For a dictionary, item will include a key and a value

11

1

5 31

8 179

5

item

right

pointer

left

pointer

CSE332, Spring 2021L08: BST

Binary Tree: Some Numbers

❖ Recall: height of a tree = longest path from root to leaf

▪ Count # of edges!

❖ For a binary tree of height h:

▪ max # of leaves: 2h

▪ max # of nodes: 2h+1 - 1

▪ min # of leaves: 1

▪ min # of nodes: h+1

13

CSE332, Spring 2021L08: BST

Calculating Tree Height

❖ What is the height of a tree with root r?

❖ What is the runtime for your algorithm?

❖ Note: non-recursive is painful – need your own stack of
pending nodes

▪ Much easier to use recursion’s call stack

14

int treeHeight(Node root) {

if(root == null)

return -1;

return 1 + max(treeHeight(root.left),

treeHeight(root.right));

}

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Analyzing Recursive Code

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

15

CSE332, Spring 2021L08: BST

Tree Traversals

❖ A traversal is an order for visiting all the nodes of a tree

▪ Pre-order: root, left subtree, right subtree

•

▪ In-order: left subtree, root, right subtree

•

▪ Post-order: left subtree, right subtree, root

•

❖ Sometimes order doesn’t matter

▪ Eg: sum all elements

▪ Eg: find an element

❖ Sometimes order matters

▪ Eg: print tree with indented children (pre-order)

▪ Eg: evaluate an expression tree (post-order)

16

+

*

2 4

5

(an expression tree)

PrintIndented:

+

*

2

4

5

CSE332, Spring 2021L08: BST

Traversals: Recursive Implementation

18

void inOrdertraversal(Node t) {

if (t != null) {

traverse(t.left);

process(t.element);

traverse(t.right);

}

}

A

B

D E

C

F G

❖ The difference between the 3 traversals (in their recursive
implementations) is when process() gets called

❖ Again, non-recursive implementation is painful

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Analyzing Recursive Code

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

19

CSE332, Spring 2021L08: BST

Binary Search Trees

❖ A Binary Search Tree is a binary tree with the following

invariant: for every node with key k in the BST:

▪ The left subtree only contains keys <k

▪ The right subtree only contains keys >k

❖ Reminder: BSTs can also contain (key, value) pairs

20

The BST ordering applies recursively to the entire subtree

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry

9

5 17

8 311

CSE332, Spring 2021

gradescope.com/courses/256241

L08: BST

❖ Are these Binary Search Trees?

A. Yes / Yes

B. Yes / No

C. No / Yes

D. No / No

E. I’m not sure …

21

4

3 7

6 52 9

8 10

Apple

Banana

Cantaloupe

Durian

Elderberry

CSE332, Spring 2021L08: BST

BST Ordering Applies Recursively

22

9

5 17

8 311

9

5 17

8 311

< 9 > 9

9

5 17

8 311

< 9 > 9

< 9 and < 5 < 9 and > 5

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Analyzing Recursive Code

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

23

CSE332, Spring 2021L08: BST

Binary Search Trees: Find/Contains

❖ Unsurprisingly, this looks a lot like binary search

❖ Can you implement contains() by putting the following

statements in the correct order?

▪ Hint: remember BST’s invariants

❖ What is find’s worst-case runtime?

24

9

5 17

8 311

boolean contains(BSTNode n,

Key k) {

}

if (n == null)

return false;

if (k.equals(n.key))

return true;

if (k < n.k) {

return contains(

n.left, k);

}

if (k >= n.k) {

return contains(

n.right, k);

}

A B C D

CSE332, Spring 2021L08: BST

BST Find/Contains: Iterative

25

9

5 17

8 311

boolean contains(BSTNode n,

Key k) {

while (n != null

&& n.key != k) {

if (k < n.key)

n = n.left;

else(k > n.key)

n = n.right;

}

if (n == null)

return false;

return true;

}

CSE332, Spring 2021L08: BST

BST Find/Contains’s runtime

❖ What is find’s worst-case runtime, as a function of n?

❖ What is find’s worst-case runtime, as a function of height?

26

Apple

Banana

Cantaloupe

Durian

Elderberry

4

3 7

6 52 9

8 5

CSE332, Spring 2021L08: BST

Other “finding operations”

❖ Find minimum node

❖ Find maximum node

27

2092

155

12

307 1710

BSTNode largest(BSTNode n) {

while (n.right != null) {

n = n.right;

}

return n;

}

CSE332, Spring 2021L08: BST

Lecture Outline

❖ Redo: Analyzing Recursive Code

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

28

CSE332, Spring 2021L08: BST

Binary Search Trees: Add

❖ Where does the new item belong?

❖ How do we use BST invariants to
ensure the leaf is added correctly?

29

dog

baby glug

ant

frog

cat ears hippo

29

BSTNode add(BSTNode t, Item i) {

// Implement by putting statements

// in the correct order

}

return t; if (k < i.key)) {

t.left

= add(t.left, i);

}

if (k > i.key) {

t.right

= add(t.right, i);

}

if (t == null){

return

new BSTNode(i);

}

DCBA

CSE332, Spring 2021L08: BST

Binary Search Trees: Remove

❖ Removing an item disrupts the tree structure

▪ find the node to be removed

▪ Remove it

▪ “Fix” the tree so that it is still a BST

❖ 3 cases based on the number of children

1. Node has no children

2. Node has one child

3. Node has two children

❖ In each case, we must
maintain the BST Ordering!

30

dog

baby glug

ant

frog

cat ears hippo

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

CSE332, Spring 2021L08: BST

BST Remove: Case #1: Leaf

❖ Remove the node with the key hippo

❖ Runtime?

31

dog

baby glug

ant

frog

cat ears hippo

BSTNode remove(BSTNode n) {

}

CSE332, Spring 2021L08: BST

BST Remove: Case #2: One Child

❖ Remove the node with the key ears

▪ What does the BST invariant say about the descendant’s keys?

❖ Runtime?

32

dog

baby glug

ant

frog

cat ears hippo

BSTNode remove(BSTNode n) {

}

CSE332, Spring 2021L08: BST

BST Remove: Case #3: Two Children

❖ Remove the node with the key dog

❖ The replacement node’s key:

▪ Must be ≻ than all keys in left
subtree

▪ Must be ≺ than all keys in right
subtree

33

dog

baby glug

ant

frog

cat ears hippo

CSE332, Spring 2021L08: BST

BST Remove: Case #3: Two Children

❖ Remove the node with the key dog

❖ The replacement node’s key:

▪ Must be ≻ than all keys in left subtree: predecessor (ie, cat)

▪ Must be ≺ than all keys in right subtree: successor (ie, ears)

❖ The predecessor or successor has either 0 or 1 children

▪ Why?

34

dog

baby glug

ant

frog

cat ears hippo

CSE332, Spring 2021L08: BST

BST Remove: Case #3: Two Children

❖ Remove the node with the key dog

❖ The replacement node’s key must be

▪ > all keys in the left subtree (ie,
predecessor cat), or

▪ < all keys in the right subtree (ie,
successor ears)

❖ The predecessor or successor both
have <2 children

▪ Why?

35

dog

baby glug

ant

frog

cat ears hippo

CSE332, Spring 2021L08: BST

BST Remove: Case #3: Two Children

36

dog

baby glug

ant

frog

cat ears hippo

cat

baby glug

ant

frog

ears hippo

ears

baby glug

ant cat frog hippo

CSE332, Spring 2021L08: BST

Aside: Finding the largest (or smallest) node

❖ The predecessor is the largest item in the left subtree

❖ The successor is the smallest item in the right subtree

❖ How do you find the largest (and smallest) item in a tree?

▪ Remember that subtrees are trees too

37

dog

baby glug

ant

frog

cat ears hippo

BSTNode largest(BSTNode n) {

while (n.right != null) {

n = n.right;

}

return n;

}

CSE332, Spring 2021L08: BST

BST Summary

❖ Binary Search Trees implement both Set and Dictionary ADTs

❖ Binary Search Trees are recursively defined

❖ There is no bound on the BST’s height as a function of its size

38

LinkedList
Dictionary,
Worst Case

BST Dictionary,
Average Case

BST
Dictionary,
Worst Case

Find Θ(N) Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Add Θ(N) Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Remove Θ(N) Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

🤔

CSE332, Spring 2021L08: BST

BST Summary

❖ Binary Search Trees implement both Set and Dictionary ADTs

❖ Binary Search Trees are recursively defined

❖ There is no bound on the BST’s height as a function of its size

39🤔

