YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Binary Search Trees
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Announcements

« Quiz 1 is due 11am PDT (not midnight!) tomorrow

« Also tomorrow: P2 partner matching survey

= Must fill out even if you keep the same partner

« Thanks to your TAs, P1 is now due FRIDAY at 8pm PDT

® Late policy is percentage-off, not late days

« We are always available for 1:1 meetings! Let us know how we
can help!

W UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

» For a binary tree of height h:
" max # of leaves:

" max # of nodes:
" min # of leaves:

" min # of nodes:

» Bonus question: What is the difference between a plain binary tree, a
binary search tree, and a binary min-heap tree?

W UNIVERSITY of WASHINGTON L0O8: BST

Lecture Outline

+ Redo: Floyd’s buildHeap

« Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
= Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

buildHeap

+« buildHeap() takes an array of size N and applies the heap-
ordering principle to it
® Faster than naive call-add () -N-times algorithm @((\ l{j N

< Intuition:

= Start in the middle of the array (ie, the first non-leaf node) and work
backwards (ie, up the tree)

= Percolate down to fix each node’s position relative to its valid
subheaps

+ Correctness and Efficiency:
= Can prove correctness inductively

= MostpercolateDown calls don’t “go far”, summation shows ©(n)

W UNIVERSITY of WASHINGTON L0O8: BST

Lecture Outline

+ Redo: Floyd’s buildHeap

+ Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
= Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

W UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Dictionary ADT: Data Structures

+ For a dictionary with n key/value pairs, what is the runtime for:

R N R T K

Unsorted linked list O(1)* O(n) O(n)
Unsorted array O(1)* O(n) O(n)
Sorted linked list O(n) O(log n) O(n)
Sorted array O(n) O(log n) O(n)

= * Note: If we allow duplicates keys to be inserted, you could do these in O(1)
because you do not need to check for a key’s existence before insertion

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Dictionary ADT: Better Data Structures

+ We will spend the next several lectures looking at dictionaries:
® Binary Search Trees
= AVL trees
« Binary search trees with guaranteed balancing
" B-Trees
+ Also always balanced, but different and shallower
- “B” 1= “Binary”; B-Trees generally have large branching factor
= Hash Tables
- Not tree-like at all

<« Skipping: Other balanced binary search trees
= Eg, red-black tree (and LLRBs), splay tree

W UNIVERSITY of WASHINGTON L0O8: BST

Lecture Outline

+ Redo: Floyd’s buildHeap

+ Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
= Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

10

YA UNIVERSITY of WASHINGTON

LO8: BST

Binary Tree

< A Binary Tree is empty or
" aroot (with item)
= 3 left subtree (maybe empty)
= aright subtree (maybe empty)

—_—)

CSE332, Spring 2021

1

__‘ /\
+ Representation: 5 31
item /\ A
| 9 8 17

left right '

pointer | pointer
5

« For a dictionary, item will include a key and a value

11

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Binary Tree: Some Numbers

+ Recall: height of a tree = longest path from root to leaf
= Count # of edges!

« For a binary tree of height h:

= max # of leaves: 2" — ﬁ%a “@ /{}\
h+1 _ 1

" max # of nodes: 2

" min # of leaves: 1

dﬂﬁ#\ {ockQ.
" min # of nodes: h+1 1 \(\ d “ ‘\’(GQ

13

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Calculating Tree Height

return -1;

?xL
return 1 + max (EreeHeight (doot.left),
eHe1lg ot.right));

}

« Note: non-recursive is painful — need your own stack of
pending nodes

® Much easier to use recursion’s call stack

14

W UNIVERSITY of WASHINGTON L0O8: BST

Lecture Outline
+ Redo: Analyzing Recursive Code
« Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
" Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

15

YA UNIVERSITY of WASHINGTON LO8: BST

Tree Traversals

CSE332, Spring 2021

« A traversal is an order for visiting all the nodes of a tree

= Pre-order: root, left subtree, right subtree

4 %245

= |n-order: left subtree, root, right subtree

- A4 +DH

= Post-order: left subtree, right subtree, root

» Sometimes order doesn’t matter
= Eg:sum all elements
= Eg: find an element

« Sometimes order matters

= Eg: print tree with indented children (pre-order)
= Eg: evaluate an expression tree (post-order)

(an expression tree)

PrintIndented:
+

16

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Traversals: Recursive Implementation

vold inOrdertraversal (Node t) {

if (t !'= null) {

traverse (t.left); e e
<:;§rocess(t.element);
raverse (t.right);
} \ OOOE
} bi(ome_s pcchOrée(.
o oder: DEBFGC A

» The difference between the 3 traversals (in their recursive
implementations) is when process() gets called

» Again, non-recursive implementation is painful

18

YA UNIVERSITY of WASHINGTON LO8: BST

Lecture Outline
+ Redo: Analyzing Recursive Code
« Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
= Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

19

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Binary Search Trees

« A Binary Search Tree is a binary tree with the following
invariant: for every node with key k in the BST: 9 |

» The left subtree only contains keys <k

5 17
» The right subtree only contains keys >k }R I—v—\l

« Reminder: BSTs can also contain (key, value) pairs

9: Banana

5: Cantaloupe

1: Elderberry 8/Apple 31: Fig

N
The BST ordering applies recursively to the entire subtree

20

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

« Are these Binary Search Trees?

A Yes/Yes

3 7
8. Yes/No
c. No/Yes /\ /\
o/ No : : 2 /-9\
. I’'mnot sure ... 8 10

Elderberry

21

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Ordering Applies Recursively

17

31

<9and>5

<9and<5

22

W UNIVERSITY of WASHINGTON L0O8: BST

Lecture Outline
+ Redo: Analyzing Recursive Code
« Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
= Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

23

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Binary Search Trees: Find/Contains

+ Unsurprisingly, this looks a lot like binary search

« Can you implement contains() by putting the following
statements in the correct order?

= Hint: remember BST’s invariants 9

+ What is find’s worst-case runtime? @(}b /\
5 17
boolean contains (BSTNode n,
e /"\ '\
1 8 31

}
A B C D
if (n == null) if (k.equals (n.key)) if (k < n.k) { if (k >= n.k) {

return false; return true; return contains(return contains(

n.left, k); n.right, k);

24

YA UNIVERSITY of WASHINGTON LO8: BST

BST Find/Contains: Iterative

boolean contains (BSTNode n,
Key k) {
while (n != null
&& n.key != k) {
if (k < n.key)
n = n.left;
else(k > n.key)
n = n.right;
}
if (n == null)
return false;
return true;
}

CSE332, Spring 2021

17

31

25

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Find/Contains’s runtime

< What is find’s worst-case runtime, as a function of n? Q(w\
« What is find’s worst-case runtime, as a function of height?@(l,\>

3 7
AN AN
2 6 5 9
8/'\5

Elderberry

26

W UNIVERSITY of WASHINGTON

Other “finding operations”

« Find minimum node

« Find maximum node

LO8: BST

BSTNode largest (BSTNode n)
while (n.right != null)
n = n.right;
}

return n;

{

{

CSE332, Spring 2021

27

W UNIVERSITY of WASHINGTON L0O8: BST

Lecture Outline
+ Redo: Analyzing Recursive Code
« Review: Dictionary and Set ADTs

+ Binary Trees != Binary Search Trees
= Tree traversals

+ Binary Search Trees as Dictionary/Set Data Structures
" Find/Contains
= Add/Remove

CSE332, Spring 2021

28

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Binary Search Trees: Add

dog

+ Where does the new.item belong?
& o \emg./\

+» How do we use BST invariants to baby glug
ensure the leaf is added correctly?

ant cat ears || hippo

BSTNode add (BSTNode t, Item i) { frog
// Implement by putting statements
// 1in the correct order

ID) ‘iiEZé:§52> L\ G?W%yKNW¥

}
A B C D
return t; if (k < i.key)) { if (k > i.key) { if (t == null){

t.left t.right return
= add(t.left, 1i); = add(t.right, 1i); new BSTNode (1) ;

29

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

Binary Search Trees: Remove

« Removing an item disrupts the tree structure
= £ind the node to be removed
= Remove it baby
= “Fix” the tree so that it is still a BST

ant cat

+ 3 cases based on the number of children | e

1. Node has no children

2. Node has one child

3. Node has two children

Reminder: a dictionary maps keys to values;
an item or data refers to the (key, value) pair

« In each case, we must
maintain the BST Ordering!

30

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Remove: Case #1: Leaf

+ Remove the node with the key hippo

+ Runtime? @ (h}

BSTNode remove (BSTNode n) {

baby

ant cat

31

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Remove: Case #2: One Child

+ Remove the node with the key ears
®= What does the BST invariant say about the descendant’s keys?

» Runtime? (W)

BSTNode remove (BSTNode n) {

dog

baby glug

ant cat - hippo

frog

| 2N\

32

W UNIVERSITY of WASHINGTON L0O8: BST

CSE332, Spring 2021

BST Remove: Case #3: Two Children

+ Remove the node with the key dog

« The replacement node’s key:

" Must be > than all keys in left
subtree COC\'

® Must be < than all keys in right
subtree

cals

| frog

33

YA UNIVERSITY of WASHINGTON LO8: BST

CSE332, Spring 2021

BST Remove: Case #3: Two Children

+ Remove the node with the key dog

+ The replacement node’s key:

" Must be > than all keys in left subtree:

® Must be < than all keys in right sub

frog
+ The predecessor or successor has either 0 or 1 childrel:

= Why?

34

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Remove: Case #3: Two Children

+ Remove the node with the key dog

cal

+ The replacement node’s key must be

= > all keys in the left subtree (ie,
predecessor cat), or

= < all keys in the right subtree (ie,
successor ears)

7 i

« The predecessor or successor both
have <2 children

= Why?

35

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Remove: Case #3: Two Children

frog

o
W

A cat ears N

baby glug baby glug

N I
ant ears hippo ant cat frog hippo

frog

5 |/

o

36

YA UNIVERSITY of WASHINGTON

LO8: BST

CSE332, Spring 2021

Aside: Finding the largest (or smallest) node

« The predecessor is the largest item in the left subtree
« The successor is the smallest item in the right subtree

+ How do you find the largest (and smallest) item in a tree?
= Remember that subtrees are trees too

BSTNode largest (BSTNode n)
while (n.right != null)
n = n.right;
}
return n;

}

{

{

dog
babyi

ant

cat

| frog

37

W UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Summary

« Binary Search Trees implement both Set and Dictionary ADTs
<« Binary Search Trees are recursively defined

« There is no bound on the BST’s height as a function of its size

LinkedList BST Dictionary, BST
Dictionary, Average Case Dictionary,
Worst Case Worst Case
Find ©(N) O©(h) aka ©(log N) ©(h) aka/©(N)
Add ©(N) ©(h) aka O(log N) ©(h) aka ©(N)
Remove O(N) ©(h) aka O(log N) ©(h) aka'®(N)

YA UNIVERSITY of WASHINGTON LO8: BST CSE332, Spring 2021

BST Summary

« Binary Search Trees implement both Set and Dictionary ADTs
<« Binary Search Trees are recursively defined

« There is no bound on the BST’s height as a function of its size

