Binary Search Trees CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

Announcements

Quiz 1 is due 11am PDT (not midnight!) tomorrow

- Also tomorrow: P2 partner matching survey
 - Must fill out even if you keep the same partner
- Thanks to your TAs, P1 is now due FRIDAY at 8pm PDT
 - Late policy is percentage-off, not late days
- We are always available for 1:1 meetings! Let us know how we can help!

Ill gradescope

gradescope.com/courses/256241

- ✤ For a binary tree of height h:
 - max # of leaves:
 - max # of nodes:
 - min # of leaves:
 - min # of nodes:

Bonus question: What is the difference between a plain binary tree, a binary search tree, and a binary min-heap tree?

Lecture Outline

- * Redo: Floyd's buildHeap
- Review: Dictionary and Set ADTs
- Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

buildHeap

- * buildHeap() takes an array of size N and applies the heapordering principle to it
- Intuition:
 - Start in the *middle* of the array (ie, the first non-leaf node) and work backwards (ie, up the tree)
 - Percolate *down* to fix each node's position relative to its valid subheaps
- Correctness and Efficiency:
 - Can prove correctness inductively
 - MostpercolateDown calls don't "go far", summation shows Θ(n)

Lecture Outline

- Redo: Floyd's buildHeap
- * Review: Dictionary and Set ADTs
- Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

Dictionary ADT: Data Structures

✤ For a dictionary with n key/value pairs, what is the runtime for:

	insert	find	delete
Unsorted linked list	O(1)*	O(n)	O(n)
Unsorted array	O(1)*	O(n)	O(n)
Sorted linked list	O(n)	O(log n)	O(n)
Sorted array	O(n)	O(log n)	O(n)

* Note: If we allow duplicates keys to be inserted, you could do these in O(1) because you do not need to check for a key's existence before insertion

Reminder: a dictionary maps *keys* to *values*; an *item* or *data* refers to the (key, value) pair

Dictionary ADT: Better Data Structures

- We will spend the next several lectures looking at dictionaries:
 - Binary Search Trees
 - AVL trees
 - Binary search trees with guaranteed balancing
 - B-Trees
 - Also always balanced, but different and shallower
 - "B" != "Binary"; B-Trees generally have large branching factor
 - Hash Tables
 - Not tree-like at all
- Skipping: Other balanced binary search trees
 - Eg, red-black tree (and LLRBs), splay tree

Lecture Outline

- Redo: Floyd's buildHeap
- Review: Dictionary and Set ADTs
- * Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

For a dictionary, item will include a key and a value

Binary Tree: Some Numbers

- Recall: height of a tree = longest path from root to leaf
 - Count # of edges!

Calculating Tree Height

- What is the height of a tree with root r?
- What is the runtime for your algorithm?

- Note: non-recursive is painful need your own stack of pending nodes
 - Much easier to use recursion's call stack

Lecture Outline

- Redo: Analyzing Recursive Code
- Review: Dictionary and Set ADTs
- Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

Tree Traversals

- * A *traversal* is an order for visiting all the nodes of a tree
 - Pre-order: root, left subtree, right subtree
 - .+*245
 - In-order: left subtree, <u>root</u>, right subtree
 - ·2*4+5
 - Post-order: left subtree, right subtree, root
- Sometimes order doesn't matter
 - Eg: sum all elements
 - Eg: find an element
- Sometimes order matters
 - Eg: print tree with indented children (pre-order)
 - Eg: evaluate an expression tree (post-order)

Traversals: Recursive Implementation

 The difference between the 3 traversals (in their recursive implementations) is when process() gets called

Again, non-recursive implementation is painful

Lecture Outline

- Redo: Analyzing Recursive Code
- Review: Dictionary and Set ADTs
- Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

17

31

9

5

Binary Search Trees

- ☆ A Binary Search Tree is a binary tree with the following invariant: for every node with key k in the BST:
 - The left subtree only contains keys <k
 - The right subtree only contains keys >k
- ✤ Reminder: BSTs can also contain (key, value) pairs

The BST ordering applies <u>recursively</u> to the entire subtree

LO8: BST

gradescope

gradescope.com/courses/256241

Are these Binary Search Trees?

BST Ordering Applies *Recursively*

Lecture Outline

- Redo: Analyzing Recursive Code
- Review: Dictionary and Set ADTs
- Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

Binary Search Trees: Find/Contains

- Unsurprisingly, this looks a lot like binary search
- Can you implement contains() by putting the following statements in the correct order?
 - Hint: remember BST's invariants
- \ast What is find's worst-case runtime?

boolean contains(BSTNode n, Key k) {

А	В	С	D
<pre>if (n == null) return false;</pre>	<pre>if (k.equals(n.key)) return true;</pre>	<pre>if (k < n.k) { return contains(n.left, k); }</pre>	<pre>if (k >= n.k) { return contains(n.right, k); }</pre>

BST Find/Contains: Iterative

```
boolean contains (BSTNode n,
                 Key k) {
 while (n != null
       && n.key != k) {
  if (k < n.key)
    n = n.left;
  else(k > n.key)
    n = n.right;
 if (n == null)
    return false;
 return true;
```


BST Find/Contains's runtime

- * What is find's worst-case runtime, as a function of n? $\Theta(n)$
- What is find's worst-case runtime, as a function of height?

Other "finding operations"

- Find minimum node
- Find maximum node

```
BSTNode largest(BSTNode n) {
  while (n.right != null) {
    n = n.right;
  }
  return n;
}
```


Lecture Outline

- Redo: Analyzing Recursive Code
- Review: Dictionary and Set ADTs
- Binary Trees != Binary Search Trees
 - Tree traversals
- Binary Search Trees as Dictionary/Set Data Structures
 - Find/Contains
 - Add/Remove

Binary Search Trees: Add

Binary Search Trees: Remove

- Removing an item disrupts the tree structure
 - find the node to be removed
 - Remove it
 - "Fix" the tree so that it is still a BST
- 3 cases based on the number of children
 - 1. Node has no children
 - 2. Node has one child
 - 3. Node has two children
- **Reminder**: a dictionary maps *keys* to *values*; an *item* or *data* refers to the (key, value) pair
- In each case, we must maintain the BST Ordering!

BST Remove: Case #1: Leaf

Remove the node with the key hippo

* Runtime? $\Theta(h)$

BST Remove: Case #2: One Child

- Remove the node with the key ears
 - What does the BST invariant say about the descendant's keys?
- * Runtime? $\Theta(h)$

- Remove the node with the key dog
- The replacement node's key:
 - Must be ≻ than all keys in left subtree Cot
 - Must be < than all keys in right subtree
 CCCS

- Remove the node with the key dog
- cat dog The replacement node's key: baby glug essor (ie, cat ■ Must be > than all keys in left subtree: ant hippo Must be < than all keys in right sub</p> Γη cat ears (ie, frog The predecessor or successor has either 0 or 1 children \diamond
 - Why?

- Remove the node with the key dog
- The replacement node's key must be
 - > all keys in the left subtree (ie, predecessor cat), or
 - < all keys in the right subtree (ie, successor ears)
- The predecessor or successor both have <2 children
 - Why?

glug

cat

dag

baby

ca

ant

Aside: Finding the largest (or smallest) node

- * The predecessor is the largest item in the left subtree
- * The successor is the smallest item in the right subtree
- * How do you find the largest (and smallest) item in a tree?
 - Remember that subtrees are trees too

BST Summary

- Binary Search Trees implement both Set and Dictionary ADTs
- Binary Search Trees are recursively defined
- There is no bound on the BST's height as a function of its size

	LinkedList Dictionary, Worst Case	BST Dictionary, Average Case	BST Dictionary, Worst Case
Find	Θ(N)	Θ(h) aka Θ(log N)	Θ(h) aka Θ(N)
Add	Θ(N)	Θ(h) aka Θ(log N)	Θ(h) aka Θ(N)
Remove	(DN)	Θ(h) aka Θ(log N)	Θ(h) aka Θ(N)

رتمنه

BST Summary

- Binary Search Trees implement both Set and Dictionary ADTs
- Binary Search Trees are recursively defined
- There is no bound on the BST's height as a function of its size

