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Announcements

❖ Quiz 1 is due 11am PDT (not midnight!) tomorrow

❖ Also tomorrow: P2 partner matching survey

▪ Must fill out even if you keep the same partner

❖ Thanks to your TAs, P1 is now due FRIDAY at 8pm PDT

▪ Late policy is percentage-off, not late days

❖ We are always available for 1:1 meetings!  Let us know how we 
can help!
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L08: BST

❖ For a binary tree of height h:

▪ max # of leaves: 

▪ max # of nodes:

▪ min # of leaves:

▪ min # of nodes:

❖ Bonus question: What is the difference between a plain binary tree, a 
binary search tree, and a binary min-heap tree?
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Lecture Outline

❖ Redo: Floyd’s buildHeap

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove
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buildHeap

❖ buildHeap() takes an array of size N and applies the heap-
ordering principle to it

▪ Faster than naïve call-add()-N-times algorithm

❖ Intuition:

▪ Start in the middle of the array (ie, the first non-leaf node) and work 
backwards (ie, up the tree)

▪ Percolate down to fix each node’s position relative to its valid 
subheaps

❖ Correctness and Efficiency:

▪ Can prove correctness inductively

▪ MostpercolateDown calls don’t “go far”, summation shows Θ(n)
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Lecture Outline
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❖ For a dictionary with n key/value pairs, what is the runtime for:

❖ * Note: If we allow duplicates keys to be inserted, you could do these in O(1) 
because you do not need to check for a key’s existence before insertion

insert find delete

Unsorted linked list O(1)* O(n) O(n)

Unsorted array O(1)* O(n) O(n)

Sorted linked list O(n) O(log n) O(n)

Sorted array O(n) O(log n) O(n)

Dictionary ADT: Data Structures
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Reminder: a dictionary maps keys to values; 
an item or data refers to the (key, value) pair
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Dictionary ADT: Better Data Structures

❖ We will spend the next several lectures looking at dictionaries:

▪ Binary Search Trees

▪ AVL trees

• Binary search trees with guaranteed balancing

▪ B-Trees

• Also always balanced, but different and shallower

• “B” != “Binary”; B-Trees generally have large branching factor

▪ Hash Tables

• Not tree-like at all

❖ Skipping: Other balanced binary search trees

▪ Eg, red-black tree (and LLRBs), splay tree
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Lecture Outline
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Binary Tree

❖ A Binary Tree is empty or
▪ a root (with item)

▪ a left subtree (maybe empty) 

▪ a right subtree (maybe empty) 

❖ Representation:

❖ For a dictionary, item will include a key and a value
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Binary Tree: Some Numbers

❖ Recall: height of a tree = longest path from root to leaf

▪ Count # of edges!

❖ For a binary tree of height h:

▪ max # of leaves: 2h

▪ max # of nodes: 2h+1 - 1

▪ min # of leaves: 1

▪ min # of nodes: h+1
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Calculating Tree Height

❖ What is the height of a tree with root  r?

❖ What is the runtime for your algorithm?

❖ Note: non-recursive is painful – need your own stack of 
pending nodes

▪ Much easier to use recursion’s call stack

14

int treeHeight(Node root) {

if(root == null)

return -1;

return 1 + max(treeHeight(root.left),

treeHeight(root.right));

}
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Lecture Outline

❖ Redo: Analyzing Recursive Code

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove
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Tree Traversals

❖ A traversal is an order for visiting all the nodes of a tree

▪ Pre-order: root, left subtree, right subtree

•

▪ In-order: left subtree, root, right subtree

•

▪ Post-order: left subtree, right subtree, root

•

❖ Sometimes order doesn’t matter

▪ Eg: sum all elements

▪ Eg: find an element

❖ Sometimes order matters

▪ Eg: print tree with indented children (pre-order)

▪ Eg: evaluate an expression tree (post-order)
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Traversals: Recursive Implementation
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void inOrdertraversal(Node t) {

if (t != null) {

traverse(t.left);

process(t.element);

traverse(t.right);

}

}

A

B

D E

C

F G

❖ The difference between the 3 traversals (in their recursive 
implementations) is when process() gets called

❖ Again, non-recursive implementation is painful
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Lecture Outline
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Binary Search Trees

❖ A Binary Search Tree is a binary tree with the following 

invariant: for every node with key k in the BST:

▪ The left subtree only contains keys <k

▪ The right subtree only contains keys >k

❖ Reminder: BSTs can also contain (key, value) pairs

20

The BST ordering applies recursively to the entire subtree

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry

9
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8 311
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❖ Are these Binary Search Trees?

A. Yes / Yes

B. Yes / No

C. No / Yes

D. No / No

E. I’m not sure …
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BST Ordering Applies Recursively
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Lecture Outline

❖ Redo: Analyzing Recursive Code

❖ Review: Dictionary and Set ADTs

❖ Binary Trees != Binary Search Trees

▪ Tree traversals

❖ Binary Search Trees as Dictionary/Set Data Structures

▪ Find/Contains

▪ Add/Remove

23



CSE332, Spring 2021L08: BST

Binary Search Trees: Find/Contains

❖ Unsurprisingly, this looks a lot like binary search

❖ Can you implement contains() by putting the following 

statements in the correct order?

▪ Hint: remember BST’s invariants

❖ What is find’s worst-case runtime?
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boolean contains(BSTNode n,

Key k) {

}

if (n == null)

return false;

if (k.equals(n.key))

return true;

if (k < n.k) {

return contains(

n.left, k);

}

if (k >= n.k) {

return contains(

n.right, k);

}

A B C D
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BST Find/Contains: Iterative
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5 17
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boolean contains(BSTNode n,

Key k) {

while (n != null

&& n.key != k) {

if (k < n.key)

n = n.left;

else( k > n.key)

n = n.right;

}

if (n == null)

return false;

return true;

}
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BST Find/Contains’s runtime

❖ What is find’s worst-case runtime, as a function of n?

❖ What is find’s worst-case runtime, as a function of height?
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Other “finding operations”

❖ Find minimum node

❖ Find maximum node
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2092

155

12

307 1710

BSTNode largest(BSTNode n) {

while (n.right != null) {

n = n.right;

}

return n;

}
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Lecture Outline
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Binary Search Trees: Add

❖ Where does the new item belong?

❖ How do we use BST invariants to 
ensure the leaf is added correctly?
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dog
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ant

frog

cat ears hippo
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BSTNode add(BSTNode t, Item i) {

// Implement by putting statements 

// in the correct order

}

return t; if (k < i.key)) {

t.left

= add(t.left, i);

}

if (k > i.key) {

t.right

= add(t.right, i);

}

if (t == null){

return

new BSTNode(i);

}

DCBA
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Binary Search Trees: Remove

❖ Removing an item disrupts the tree structure

▪ find the node to be removed

▪ Remove it

▪ “Fix” the tree so that it is still a BST

❖ 3 cases based on the number of children

1. Node has no children

2. Node has one child

3. Node has two children

❖ In each case, we must
maintain the BST Ordering!
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Reminder: a dictionary maps keys to values; 
an item or data refers to the (key, value) pair
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BST Remove: Case #1: Leaf

❖ Remove the node with the key hippo

❖ Runtime?
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BSTNode remove(BSTNode n) {

}
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BST Remove: Case #2: One Child

❖ Remove the node with the key ears

▪ What does the BST invariant say about the descendant’s keys?

❖ Runtime?
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BSTNode remove(BSTNode n) {

}
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BST Remove: Case #3: Two Children

❖ Remove the node with the key dog

❖ The replacement node’s key:

▪ Must be ≻ than all keys in left 
subtree

▪ Must be ≺ than all keys in right 
subtree
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BST Remove: Case #3: Two Children

❖ Remove the node with the key dog

❖ The replacement node’s key:

▪ Must be ≻ than all keys in left subtree: predecessor (ie, cat)

▪ Must be ≺ than all keys in right subtree: successor (ie, ears)

❖ The predecessor or successor has either 0 or 1 children

▪ Why?
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BST Remove: Case #3: Two Children

❖ Remove the node with the key dog

❖ The replacement node’s key must be

▪ > all keys in the left subtree (ie, 
predecessor cat), or

▪ < all keys in the right subtree (ie, 
successor ears)

❖ The predecessor or successor both 
have <2 children

▪ Why?
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BST Remove: Case #3: Two Children
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Aside: Finding the largest (or smallest) node

❖ The predecessor is the largest item in the left subtree

❖ The successor is the smallest item in the right subtree

❖ How do you find the largest (and smallest) item in a tree?

▪ Remember that subtrees are trees too
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BSTNode largest(BSTNode n) {

while (n.right != null) {

n = n.right;

}

return n;

}
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BST Summary

❖ Binary Search Trees implement both Set and Dictionary ADTs

❖ Binary Search Trees are recursively defined

❖ There is no bound on the BST’s height as a function of its size
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LinkedList 
Dictionary, 
Worst Case

BST Dictionary, 
Average Case

BST 
Dictionary,
Worst Case

Find Θ(N) Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Add Θ(N) Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Remove Θ(N) Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

🤔
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BST Summary

❖ Binary Search Trees implement both Set and Dictionary ADTs

❖ Binary Search Trees are recursively defined

❖ There is no bound on the BST’s height as a function of its size

39🤔


