
CSE332, Spring 2021L07: buildHeap

buildHeap
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar



CSE332, Spring 2021

gradescope.com/courses/256241

L07: buildHeap

❖ Given the following list of elements, what ordering results in the worst 
case aggregate runtime for add() : 16, 32, 4, 57, 80, 43, 2

22



CSE332, Spring 2021L07: buildHeap

Announcements

❖ Quiz #1 released tomorrow morning, due 11am (PDT)

▪ Nothing we cover today is on quiz 1

▪ Recommended group size: 2-4 students

❖ Project #1 due Thursday @ 8pm (PDT)

▪ If you’re struggling with your partnership, please reach out!

▪ If you’re struggling with the project, schedule 1:1 time!

• Don’t forget to check your pipelines for failures (we do!)

❖ Sorry about the due dates; this is the only one the entire 
quarter!

3



CSE332, Spring 2021L07: buildHeap

Lecture Outline

❖ Heaps, cont.

▪ Heaps, cont.

▪ Floyd’s buildHeap Algorithm

▪ Farewell to Heaps …

4



CSE332, Spring 2021L07: buildHeap

Array Representation of a Binary Heap 

❖ In lecture and in Weiss, skip index 0 to make the math simpler

▪ Though, it’s a good place to store the current size of the heap

▪ P1 doesn’t skip; starts counting from 0

❖ From node i:

▪ left child: 

▪ right child: 

▪ parent:

5

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13



CSE332, Spring 2021L07: buildHeap

Evaluating the Array Implementation

❖ Advantages:
▪ Minimal amount of wasted space:

• Only index 0 and any unused space on right in the array

• No "holes" due to complete tree property

• No wasted space representing tree edges

▪ Fast lookups:
• Benefit of array lookup speed

• Multiplying / dividing by 2 is extremely fast (see CSE 351 and bit-shifting)

• Last used position is easily found by using the PQueue's size for the index

❖ Disadvantages: 
▪ If the array gets too full, needs to be resized

▪ If the array is too empty, wastes space and needs to be resized

❖ Advantages outweigh disadvantages: this is how it is done!

66



CSE332, Spring 2021L07: buildHeap

O(1) average-case add()?!  (1 of 2)

❖ Yes, add’s worst case is O(log n)
▪ It all depends on the order the items are inserted

▪ What is the worst case order?

❖ Empirical studies of randomly ordered inputs shows:
▪ Average 2.607 comparisons per insert (# of percolation passes)

▪ An element usually moves up 1.607 levels

❖ If we define “average” as a single operation with a random input 
occurring after a sequence of similarly randomized operations:
▪ add’s average case is O(1)

▪ deleteMin’s average case is still O(log n)
• Moving a leaf to the root usually requires re-percolating that item back to the 

bottom

77



CSE332, Spring 2021L07: buildHeap

O(1) average-case add()?!  (2 of 2)

❖ In a complete binary tree, each row has
2x nodes of its parent row
▪ Bottom level has ~1/2 of all nodes

▪ Second to bottom has ~1/4 of all nodes

▪ …

❖ Intuition:
▪ When inserting a random priority, likely not to have highest nor lowest 

priority; somewhere in middle

▪ Given a random distribution of priorities in the heap:
• Bottom level should have the upper ½ of priorities

• Second to bottom, next ¼

• …

▪ Expect to only percolate up 1-2 levels

88

996040

8020

10

700 50

85



CSE332, Spring 2021L07: buildHeap

Lecture Outline

❖ Heaps, cont.

▪ Heaps, cont.

▪ Floyd’s buildHeap Algorithm

▪ Farewell to Heaps …

9



CSE332, Spring 2021L07: buildHeap

One Final Operation: buildHeap

❖ buildHeap() takes an array of size N and applies the heap-
ordering principle to it

❖ Naïve implementation:

▪ Start with an empty array (representing an empty binary heap)

▪ Call add() N times

▪ Runtime: ??

❖ Can we do better?

▪ If we only have add and deleteMin operations, NO

▪ There is a faster way -- O(n) -- but requires the data structure to have 
a specialized buildHeap operation

▪ Is it convenient? Efficient? Simple?

10



CSE332, Spring 2021L07: buildHeap

Floyd’s buildHeap Method

❖ Recall our general strategy for working with the heap: 

▪ Preserve structure property 

▪ (Break and) Restore heap ordering property 

❖ Floyd’s buildHeap:

▪ Create a complete tree by putting the n items in an array

• Structure property!

▪ Treat the array as a binary heap and fix the heap-order property

• Order property!

▪ Exactly how we do this is where we gain efficiency 

1111

Reminder: a priority queue contains priorities and 
values; an item or data refers to the (priority, value) pair



CSE332, Spring 2021L07: buildHeap

Robert Floyd

❖ Turing Award winner

▪ Floyd-Warshall algorithm (all-pairs 
shortest path)

▪ Programming parsing and semantics

❖ Invented in-place Heapsort

12

By Source, Fair use, 
https://en.wikipedia.org/w/index.php?curid=59539154



CSE332, Spring 2021L07: buildHeap

Thinking about buildHeap

❖ Say we start with this array: [12,5,11,3,10,2,9,4,8,1,7,6]

❖ Where should we start?  Top vs bottom?

❖ To “fix” the ordering can we use:

▪ percolateUp?

▪ percolateDown?

1313

6718

92103

115

12

4



CSE332, Spring 2021L07: buildHeap

Floyd’s buildHeap Method

❖ Bottom-up: 

▪ Leaves are already in heap order 

▪ Work up toward the root one level at a time, percolating downwards

1414

void buildHeap(arr) {

n = arr.length

for (i = n/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i, val);

arr[hole] = val;

}

}

Note: P1 doesn’t skip; starts counting from 0



CSE332, Spring 2021L07: buildHeap

buildHeap Example

❖ Say we start with this array: [12,5,11,3,10,2,9,4,8,1,7,6]

▪ In tree form for readability

❖ Red for node not less than descendants 

▪ Ie, heap-order problem

▪ Notice no leaves are red!

1515

6718

92103

115

12

4



CSE332, Spring 2021L07: buildHeap

buildHeap Example: Step 1

❖ Happens to already be less than child

16

6718

92103

115

12

4 6718

92103

115

12

4



CSE332, Spring 2021L07: buildHeap

buildHeap Example: Step 2

❖ Percolate down (notice that this moves up ‘1’)

17

6718

92103

115

12

4 67108

9213

115

12

4



CSE332, Spring 2021L07: buildHeap

buildHeap Example: Step 3

❖ Another nothing-to-do step

18

67108

9213

115

12

4 67108

9213

115

12

4



CSE332, Spring 2021L07: buildHeap

buildHeap Example: Step 4

❖ Percolate down.  Which nodes got moved?

19

67108

9213

115

12

4 117108

9613

25

12

4



CSE332, Spring 2021L07: buildHeap

buildHeap Example: Step 5

❖ Again, percolate down

20

117108

9613

25

12

4 117108

9653

21

12

4



CSE332, Spring 2021L07: buildHeap

buildHeap Example: Step 6

❖ Lastly, percolate down as necessary

21

117108

9653

21

12

4 127108

91153

61

2

4



CSE332, Spring 2021L07: buildHeap

But is it right?

❖ “Seems to work”

▪ Let’s prove it restores the heap property (correctness)

▪ Then let’s prove its running time (efficiency)

2222

void buildHeap(arr) {

n = arr.length

for(i = n/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i, val);

arr[hole] = val;

}

}



CSE332, Spring 2021L07: buildHeap

Floyd’s buildHeap: Correctness

❖ Loop Invariant: For all j>i, arr[j] is less than its children

▪ True initially: If j > size/2, then j is a leaf

• Otherwise its left child would be at position >size

▪ True after one iteration: loop body and percolateDown make 
arr[i] less than children without breaking the property for any 
descendants

❖ Therefore, after loop
terminates, all nodes are
less than their children

2323

void buildHeap(arr) {

n = arr.length

for(i = n/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i, val);

arr[hole] = val;

}

}



CSE332, Spring 2021L07: buildHeap

Floyd’s buildHeap: Correctness Example

2424

6718

92103

115

12

4

12 5 11 3 10 2 9 4 8 1 7 6

0 1 2 3 4 5 6 7 8 9 10 11 12

void buildHeap(arr) {

n = arr.length

for(i = n/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i, val);

arr[hole] = val;

}

}



CSE332, Spring 2021L07: buildHeap

Floyd’s buildHeap: Efficiency (1 of 2)

❖ Easy argument: buildHeap is O(n log n) where n is array size

▪ n/2 loop iterations

▪ Each iteration does one percolateDown, which are O(log n) each

▪ So Floyd’s buildHeap is n/2 * log n = O(n log n) 

❖ This is correct, but there is a more precise (“tighter”) analysis

25

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}



CSE332, Spring 2021L07: buildHeap

Floyd’s buildHeap: Efficiency (2 of 2)

❖ Better argument:  buildHeap is O(n) where n is array size

▪ n/2 total loop iterations: O(n)

• 1/2 of the loop iterations percolate at most 1 step

• 1/4 of the loop iterations percolate at most 2 steps

• 1/8 of the loop iterations percolate at most 3 steps

• … etc …

▪ But we know (1 + (1/2) + (2/4) + (3/8) + …) = 2

• See page 4 of Weiss

• Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

▪ So Floyd’s buildHeap is n/2 * 2 = O(n) 

26
6718

92103

115

12

4



CSE332, Spring 2021L07: buildHeap

Lessons from buildHeap

❖ Without buildHeap, our ADT let clients implement their own 

in (n log n) worst case

▪ Worst case is inserting lower priorities later

❖ By providing a specialized operation (with access to the 
internal data structure), we can do O(n) worst case

▪ Intuition: Most items are near a leaf, so better to percolate down

❖ Can analyze this algorithm for:

▪ Correctness: Non-trivial inductive proof using loop invariant

▪ Efficiency:

• First analysis easily proved it was O(n log n)

• A “tighter” analysis shows same algorithm is O(n)

27



CSE332, Spring 2021L07: buildHeap

Lecture Outline

❖ Heaps, cont.

▪ Heaps, cont.

▪ Floyd’s buildHeap Algorithm

▪ Farewell to Heaps …

28



CSE332, Spring 2021L07: buildHeap

Evaluating Heaps

❖ Unsorted Array: not sorted “enough” to provide fast deletion

❖ Sorted Array: “too” sorted to provide fast insertion

❖ Binary Heap: “just enough” sorting to provide “fast enough” 
insertion and deletion

2929

add deleteMin

Unsorted Array add at end: O(1) search: O(N)

Sorted Circular Array
search + shift: 

O(N)
move front pointer: 

O(1)

Binary Heap
O(log N), but 

O(1) expected
O(log N)



CSE332, Spring 2021L07: buildHeap

What we’re skipping (see text if curious)

❖ d-heaps: have d children instead of 2 (Weiss 6.5)

▪ Makes heaps shallower, useful for heaps too big for memory

▪ How does this affect the asymptotic run-time (for small d’s)?

❖ Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)

▪ Different data structures for priority queues that support a 
logarithmic time merge operation (impossible with binary heaps)

▪ merge: given two priority queues, make one priority queue

▪ add & deleteMin defined in terms of merge (!!)

❖ Aside: How might you merge binary heaps:

▪ If one heap is much smaller than the other?

▪ If both are about the same size?
30



CSE332, Spring 2021L07: buildHeap

Other Operations

❖ decreasePriority: given pointer to object in priority 
queue (e.g., its array index), lower its priority by p

▪ Change priority and percolate up

❖ increasePriority: given pointer to object in priority 
queue (e.g., its array index), raise its priority by p

▪ Change priority and percolate down

❖ remove: given pointer to object in priority queue (e.g., its 
array index), remove it from the queue

▪ decreaseKey with p = , then deleteMin

❖ Running time for all these operations?
3131


