buildHeap CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

Ill gradescope

gradescope.com/courses/256241

Given the following list of elements, what ordering results in the *worst* case aggregate runtime for add(): 16, 32, 4, 57, 80, 43, 2

Announcements

- Quiz #1 released tomorrow morning, due 11am (PDT)
 - Nothing we cover today is on quiz 1
 - Recommended group size: 2-4 students
- Project #1 due Thursday @ 8pm (PDT)
 - If you're struggling with your partnership, please reach out!
 - If you're struggling with the project, schedule 1:1 time!
 - Don't forget to check your pipelines for failures (we do!)
- Sorry about the due dates; this is the only one the entire quarter!

Lecture Outline

- Heaps, cont.
 - Heaps, cont.
 - Floyd's buildHeap Algorithm
 - Farewell to Heaps ...

Array Representation of a Binary Heap

- In lecture and in Weiss, skip index 0 to make the math simpler
 - Though, it's a good place to store the current size of the heap
 - P1 doesn't skip; starts counting from 0

Evaluating the Array Implementation

Advantages:

- Minimal amount of wasted space:
 - Only index 0 and any unused space on right in the array
 - No "holes" due to complete tree property
 - No wasted space representing tree edges
- Fast lookups:
 - Benefit of array lookup speed
 - Multiplying / dividing by 2 is extremely fast (see CSE 351 and bit-shifting)
 - Last used position is easily found by using the PQueue's size for the index
- Disadvantages:
 - If the array gets too full, needs to be resized
 - If the array is too empty, wastes space and needs to be resized

* Advantages outweigh disadvantages: this is how it is done!

O(1) average-case add()?! (1 of 2)

- Yes, add's worst case is O(log n)
 - It all depends on the order the items are inserted
 - What is the worst case order?
- Empirical studies of <u>randomly ordered</u> inputs shows:
 - Average 2.607 comparisons per insert (# of percolation passes)
 - An element usually moves up 1.607 levels
- If we define "average" as a single operation with a random input occurring after a sequence of similarly randomized operations:
 - add's average case is O(1)
 - deleteMin's average case is still O(log n)
 - Moving a leaf to the root usually requires re-percolating that item back to the bottom

99

20

50

60

O(1) average-case add()?! (2 of 2)

- In a complete binary tree, each row has
 2x nodes of its parent row
 - Bottom level has ~1/2 of all nodes
 - Second to bottom has ~1/4 of all nodes
- Intuition:

...

When inserting a random priority, likely not to have highest nor lowest priority; somewhere in middle

~25%

700

- Given a random distribution of priorities in the heap:
 - Bottom level should have the upper ½ of priorities
 - Second to bottom, next 1/4
 - ...
- Expect to only percolate up 1-2 levels

Lecture Outline

- Heaps, cont.
 - Heaps, cont.
 - Floyd's buildHeap Algorithm
 - Farewell to Heaps ...

One Final Operation: buildHeap

- * buildHeap() takes an array of size N and applies the heapordering principle to it
- Naïve implementation:
 - Start with an empty array (representing an empty binary heap)
 - Call add() N times
 - Runtime: ??
- Can we do better?
 - If we only have add and deleteMin operations, NO
 - There is a faster way -- O(n) -- but requires the data structure to have a specialized buildHeap operation
 - Is it convenient? Efficient? Simple?

Floyd's buildHeap Method

- Recall our general strategy for working with the heap:
 - Preserve structure property
 - Break and) Restore heap ordering property
- Floyd's buildHeap:
 - Create a complete tree by putting the n items in an array
 - Structure property!
 - Treat the array as a binary heap and fix the heap-order property
 - Order property!
 - Exactly how we do this is where we gain efficiency

Reminder: a priority queue contains *priorities* and *values*; an *item* or *data* refers to the (priority, value) pair

Robert Floyd

- Turing Award winner
 - Floyd-Warshall algorithm (all-pairs shortest path)
 - Programming parsing and semantics
- Invented in-place Heapsort

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=59539154

Thinking about buildHeap

- Say we start with this array: [12,5,11,3,10,2,9,4,8,1,7,6]
- Where should we start? Top vs bottom?
- To "fix" the ordering can we use:
 - percolateUp?
 - percolateDown?

Floyd's buildHeap Method

- Bottom-up:
 - Leaves are already in heap order
 - Work up toward the root one level at a time, percolating downwards

```
void buildHeap(arr) {
    n = arr.length
    for (i = n/2; i>0; i--) {
      val = arr[i];
      hole = percolateDown(i, val);
      arr[hole] = val;
    }
}
```

Note: P1 doesn't skip; starts counting from 0

buildHeap Example

- Say we start with this array: [12,5,11,3,10,2,9,4,8,1,7,6]
 - In tree form for readability
- Red for node not less than descendants
 - Ie, heap-order problem
 - Notice no leaves are red!

Happens to already be less than child

Percolate down (notice that this moves up '1')

Another nothing-to-do step

Percolate down. Which nodes got moved?

Again, percolate down

Lastly, percolate down as necessary

But is it right?

- Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

Floyd's buildHeap: Correctness

- ★ Loop Invariant: For all j>i, arr[j] is less than its children
 - True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position $\verb+size$
 - True after one iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

 void buildHeap(arr)
- Therefore, after loop terminates, all nodes are less than their children

```
void buildHeap(arr) {
    n = arr.length
    for(i = n/2; i>0; i--) {
      val = arr[i];
      hole = percolateDown(i, val);
      arr[hole] = val;
    }
}
```

Floyd's buildHeap: Correctness Example

Floyd's buildHeap: Efficiency (1 of 2)

- Search Easy argument: buildHeap is O(n log n) where n is array size
 - n/2 loop iterations
 - Each iteration does one percolateDown, which are O(log n) each
 - So Floyd's buildHeap is n/2 * log n = O(n log n)
- This is correct, but there is a more precise ("tighter") analysis

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Actual runtime.

We know:

Floyd's buildHeap: Efficiency (2 of 2)

- Better argument: buildHeap is O(n) where n is array size
 - n/2 total loop iterations: O(n)
 - 1/2 of the loop iterations percolate at most 1 step
 - 1/4 of the loop iterations percolate at most 2 steps
 - 1/8 of the loop iterations percolate at most 3 steps
 - ... etc ...
 - But we know (1 + (1/2) + (2/4) + (3/8) + ...) = 2
 - See page 4 of Weiss
 - Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree 50

• So Floyd's buildHeap is n/2 * 2 = O(n)We know $\frac{n}{2} \begin{pmatrix} \log n \\ 2 i \end{pmatrix} \begin{pmatrix} 1 \\ 2 i \end{pmatrix} \begin{pmatrix} n \\ 2 i \end{pmatrix} \begin{pmatrix} 1 \\ 2 i \end{pmatrix} \begin{pmatrix} n \\ 2 i \end{pmatrix} \begin{pmatrix} 2 i \\ 2 i \end{pmatrix} \begin{pmatrix} n \\ 2 i \end{pmatrix} \begin{pmatrix} 2 i \\ 2 i \end{pmatrix} \begin{pmatrix} n \\ 2 i \end{pmatrix} \begin{pmatrix} 1 \\ 2 i$

9

Lessons from buildHeap

- Without buildHeap, our ADT let clients implement their own in θ(n log n) worst case
 - Worst case is inserting lower priorities later
- By providing a specialized operation (with access to the internal data structure), we can do O(n) worst case
 - Intuition: Most items are near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness: Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - A "tighter" analysis shows same algorithm is O(n)

Lecture Outline

- Heaps, cont.
 - Heaps, cont.
 - Floyd's buildHeap Algorithm
 - Farewell to Heaps ...

Evaluating Heaps

	add	deleteMin
Unsorted Array	add at end: O(1)	search: O(N)
Sorted Circular Array	search + shift: O(N)	move front pointer: O(1)

Unsorted Array: not sorted "enough" to provide fast deletion

Sorted Array: "too" sorted to provide fast insertion

 Binary Heap: "just enough" sorting to provide "fast enough" insertion and deletion

Binary Heap

O(log N), but O(1) expected

O(log N)

What we're skipping (see text if curious)

- *d-heaps*: have d children instead of 2 (Weiss 6.5)
 - Makes heaps shallower, useful for heaps too big for memory
 - How does this affect the asymptotic run-time (for small d's)?
- * Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
 - Different data structures for priority queues that support a logarithmic time merge operation (impossible with binary heaps)
 - merge: given two priority queues, make one priority queue
 - add & deleteMin defined in terms of merge (!!)
- Aside: How might you merge binary heaps:
 - If one heap is much smaller than the other?
 - If both are about the same size?

Other Operations

- **decreasePriority**: given pointer to object in priority queue (e.g., its array index), lower its priority by p
 - Change priority and percolate up
- * increasePriority: given pointer to object in priority
 queue (e.g., its array index), raise its priority by p
 - Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with p = ∞, then deleteMin
- Running time for all these operations?