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❖ What is the difference between a binary tree and a binary search tree?

2



CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Announcements

❖ P1: Congrats on completing Checkpoint 1!

▪ (if you didn’t fill out the survey, you still can until tomorrow night 
(PDT)

❖ Reminder that we will NOT answer concept questions in office 
hours after the quiz is released on Tuesday

▪ Get your questions in now!
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Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation
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ADTs So Far (1 of 3)
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List ADT. A collection storing an 

ordered sequence of 

elements.

• Each element is accessible by a 

zero-based index

• A list has a size defined as the 

number of elements in the list

• Elements can be added to the 

front, back, or any index in the list

• Optionally, elements can be 

removed from the front, back, or 

any index in the list
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ADTs So Far (2 of 3)
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Queue ADT. A collection storing 

an ordered sequence of 

elements.

• A queue has a size defined as 

the number of elements in 

the queue

• Elements can only be added 

to one end and removed from 

the other (“FIFO”)

Stack ADT. A collection storing 

an ordered sequence of 

elements.

• A stack has a size defined as 

the number of elements in 

the stack

• Elements can only be added 

and removed from the top 

(“LIFO”)
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ADTs So Far (3 of 3)
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Set ADT. A collection of values.

• A set has a size defined as the 

number of elements in the set

• You can add and remove values, 

but the contained values are 

unique

• Each value is accessible via a “get” 

operation

Dictionary ADT. A collection of keys, 

each associated with a value.

• A dictionary has a size defined as 

the number of elements in the 

dictionary

• You can add and remove (key, 

value) pairs, but the keys are 

unique

• Each value is accessible by its key 

via a “find” or “contains” operation
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A Scenario

❖ What is the difference between waiting for service at a 
pharmacy versus an ER?

▪ Pharmacies usually follow the rule “First Come, First Served”

▪ Emergency Rooms assign priorities based on each individual's need
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A New ADT: Priority Queue

❖ See Weiss Chapter 6

❖ A priority queue holds compare-able data

▪ Unlike lists, stacks, and queues, we need to compare items

• Given x and y: is x less than, equal to, or greater than y?

• Much of this course will require comparable items: e.g. sorting

▪ Typically two fields: the priority and the data

❖ For simplicity in lecture, we’ll suppose data are ints and that 
the same int value is also the priority

▪ int priorities are common, but really just need Comparable

▪ Not having “other data” is very rare

• Example: print job has a priority and the file to print
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Priority Queue ADT: Intro
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Priority Queue ADT. A collection 

storing a set of elements and 

their priority.

• A PQ has a size defined as the 

number of elements in the set

• You can add elements (and their 

priorities)

• You cannot access or remove 

arbitrary elements, only the 

element with the min priority

Primary Operations: 
• add

• deleteMin

Key property:
• deleteMin removes and returns the 

“most important” item (lowest 
priority value)

• Can resolve ties arbitrarily
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Priority Queue ADT: Functionality

❖ In lecture, we will study min priority queues but you may also 
see max priority queues

▪ Same as minPQs, but invert the priority

❖ In a PQ, the only item that matters
is the min (or max)
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Priority Queue ADT: Example

add a with priority 5

add b with priority 3

add c with priority 4

w = deleteMin

x = deleteMin

add d with priority 2

add e with priority 6

y = deleteMin

z = deleteMin

12

after execution:

6->e

w = b

x = c

y = d

z = a
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Priority Queue ADT: Example

add a with priority 5

add b with priority 3

add c with priority 4

w = deleteMin

x = deleteMin

add d with priority 2

add e with priority 6

y = deleteMin

z = deleteMin

13

after execution:

6->e

w = b

x = c

y = d

z = a
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❖ How do Priority Queues differ from Queues?  How can you implement 
a Queue using a Priority Queue?
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Priority Queue ADT: Applications

❖ Run multiple programs in the operating system
▪ “critical” before “interactive” before “compute-intensive”

❖ Triage (or treat) hospital patients in order of severity

❖ Order print jobs (by increasing length?)

❖ Forward network packets by order of urgency

❖ Identify most frequently-used symbols for data compression

❖ Sorting!

▪ add all elements, then repeatedly deleteMin
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Priority Queue ADT: More Applications

❖ Used heavily in greedy algorithms, where each phase of the 
algorithm picks the locally optimum solution

❖ Example: route finding

▪ Represent a map as a
series of segments

▪ At each intersection, ask
which segment gets you
closest to the destination
(ie, has max priority or
min distance)
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Priority Queue ADT: Possible Data Structures

17
Assumptions: Worst case; Arrays have enough space

add deleteMin

Unsorted Array

Unsorted Singly-linked 
Linked List

Sorted Circular Array

Sorted Doubly-linked 
Linked List

Binary Search Tree (BST)
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Our Eventual Data Structure: The Heap

❖ Heap:

▪ add: O(log n), worst case

▪ deleteMin: O(log n), worst case

▪ If items added in random order, expected case for add is O(1)

▪ Very good constant factors

❖ Key idea: Only pay for functionality needed

▪ We need something better than scanning unsorted items

▪ But we do not need to maintain a full sorted list

❖ We visualize our heap as a tree, so let’s review some terminology
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Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation
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Review: Tree Terminology
❖ root(T): 

❖ leaves(T):

❖ children(B):

❖ parent(H):

❖ siblings(E):

❖ ancestors(F):

❖ descendants(G):

❖ subtree(G):

❖ depth(B):

❖ height(G):

❖ height(T):

❖ degree(B):

❖ branching factor(T):
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❖ siblings(E):

❖ height(T):

❖ branching factor(T):
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Types of Trees
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Perfect Tree
Complete Tree

Binary tree Every node has ≤ 2 children

N-ary tree Every node has ≤ n children

Perfect tree Every row is completely full

Complete tree
All rows except possibly the bottom are 

completely full.  The bottom row is filled from 
left to right 
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Perfect Tree Properties

25

Perfect Tree
Complete Tree

Height Number of Nodes Number of Leaves
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Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation
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Our Data Structure: Binary (Min-)Heap (1 of 3)

❖ More commonly known as a binary heap or simply a heap

▪ The “min” refers to the fact that the special priority value is the 
smallest; a “max heap” tracks the largest priority

❖ Structure Property: A complete binary tree

❖ Order Property: Every non-root node has a priority value larger 
than (or possibly equal to) the priority of its parent

27

How is this different from a binary search tree?



CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Our Data Structure: Binary (Min-)Heap (2 of 3)

❖ More commonly known as a binary heap or simply a heap

▪ The “min” refers to the fact that the special priority value is the 
smallest; a “max heap” tracks the largest priority

❖ Structure Property: A complete binary tree

❖ Order Property: Every non-root node has a priority value larger 
than (or possibly equal to) the priority of its parent

28

2513

8020

30

856040

8020

10

700 50

99

A Heap Not a Heap



CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Our Data Structure: Binary (Min-)Heap (3 of 3)

❖ Where is the minimum priority item?

❖ What is the height of a heap with n items?

❖ Is this tree unique to this heap?
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❖ Are these valid binary min-heaps?

A. Yes, no, yes, yes

B. Yes, yes, yes, yes

C. Yes, no, no, yes

D. Yes, no, yes, no

E. No, no, yes, no

F. I’m not sure …
30
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Binary Heap Helper Functions 

❖ add:

▪ Put new node in rightmost position 
of the last row (restore structure 
property)

▪ “Percolate up” to correct layer 
(restore order property)

❖ deleteMin: 

▪ answer = root.item

▪ Move rightmost node in last row to 
root (restore structure property)

▪ “Percolate down” to correct layer 
(restore order property)
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Overall strategy:

• Preserve complete tree 
structure property

– ... which may break 
heap order property

• Percolate to restore heap 
order property
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Binary Heap: add()

❖ Put new node in rightmost position of the last row 

❖ “Percolate up” to correct layer
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percolateUp() Helper Function

❖ percolateUp():

▪ Put new item in new location

▪ If parent larger, swap with parent, and continue

▪ Done when parent  item or reached root

❖ Why does this work? What is the run time?
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Binary Heap: removeMin()

❖ Move rightmost node in last row to the root

❖ “Percolate down” to correct layer
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percolateDown() Helper Function

❖ percolateDown: 

▪ Keep comparing with both children 

▪ Move smaller child up and go down one level

▪ Done if both children are  item or reached a leaf node

❖ Why does this work? What is the run time?
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Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation
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A Clever Trick for Storing the Heap…

❖ All complete trees of size n contain the same edges

▪ So why are we even representing the edges?

▪ We should only pay for the functionality we need!!
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Array Representation of a Binary Heap 

❖ In lecture and in Weiss, skip index 0 to make the math simpler

▪ Though, it’s a good place to store the current size of the heap

▪ P1 doesn’t skip; starts counting from 0

❖ From node i:

▪ left child: 

▪ right child: 

▪ parent:
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Pseudocode: add()

39

void insert(int val) {

if (size == arr.length-1)

resize();  

size++;

i = percolateUp(size,val);

arr[i] = val;

}

int percolateUp(int hole, 
int val) {

while (hole > 1 &&
val < arr[hole/2]) {

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}
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10 20 80 40 60 85 99 700 50
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Disclaimers:

• This pseudocode uses ints.  In real use, you 
will have nodes with priorities and values

• P1 doesn’t skip; starts counting from 0
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Pseudocode: deleteMin()
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int deleteMin() {

if(isEmpty()) throw …

ans = arr[1];

hole = percolateDown(

1, arr[size]);

arr[hole] = arr[size];

size--;

return ans;

}

int percolateDown(int hole,
int val) {

while (2*hole <= size) {
left = 2*hole; 
right = left + 1;
if (arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if (arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}
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1. add: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

4141
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Activity Answer: After add()s

1. add: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

4242
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Activity Answer: After deleteMin()

1. add: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

4343
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