YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT; Heaps

CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

« What is the difference between a binary tree and a binary search tree?

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Announcements

« P1: Congrats on completing Checkpoint 1!

= (if you didn’t fill out the survey, you still can until tomorrow night
(PDT)

« Reminder that we will NOT answer concept questions in office
hours after the quiz is released on Tuesday

= Get your questions in now!

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Lecture Outline

<+ Priority Queue ADT

« Tree Terminology and Properties

+ Binary Heap
® Tree Visualization and Operations
" Array Representation

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

ADTs So Far (1 of 3)

(~ ™)
List ADT. A collection storing an
ordered sequence of

elements.

® Each element is accessible by a
zero-based index

® Alist has a size defined as the
number of elements in the list

® Elements can be added to the
front, back, or any index in the list

e Optionally, elements can be
removed from the front, back, or
any index in the list

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

ADTs So Far (2 of 3)

s

Stack ADT. A collection storing
an ordered sequence of
elements.

® A stack has a size defined as
the number of elements in
the stack

® Elements can only be added
and removed from the top
(“LIFO”)

Queue ADT. A collection storing
an ordered sequence of
elements.

® A queue has a size defined as
the number of elements in
the queue

® Elements can only be added
to one end and removed from
the other (“FIFO”)

YA UNIVERSITY of WASHINGTON

ADTs So Far (3 of 3)

LO6: Priority Queue ADT; Heaps

CSE332, Spring 2021

e

Set ADT. A collection of values.

® Aset has a size defined as the
number of elements in the set

® You can add and remove values,
but the contained values are
unique

® Each value is accessible via a “get”
operation

e

Dictionary ADT. A collection of keys,
each associated with a value.

e Adictionary has a size defined as
the number of elements in the
dictionary

® You can add and remove (key,
value) pairs, but the keys are
unique

® Each value is accessible by its key
via a “find” or “contains” operation

J

YA UNIVERSITY of WASHINGTON

LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

A Scenario

« What is the difference between waiting for service at a
pharmacy versus an ER?

® Pharmacies usually follow the rule “First Come, First Served”

= Emergency Rooms assign priorities based on each individual's need

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

A New ADT: Priority Queue

+ See Weiss Chapter 6

« A priority queue holds compare-able data

= Unlike lists, stacks, and queues, we need to compare items
« Given x and y: is x less than, equal to, or greater than y?
« Much of this course will require comparable items: e.g. sorting

= Typically two fields: the priority and the data

+ For simplicity in lecture, we’ll suppose data are ints and that
the same int value is also the priority

® int priorities are common, but really just need Comparable

" Not having “other data” is very rare
- Example: print job has a priority and the file to print

YA UNIVERSITY of WASHINGTON

LO6: Priority Queue ADT; Heaps

CSE332, Spring 2021

Priority Queue ADT: Intro

s

Priority Queue ADT. A collection
storing a set of elements and
their priority.

® A PQ has asize defined as the

number of elements in the set

® You can add elements (and their

priorities)

® You cannot access or remove

arbitrary elements, only the
element with the min priority

Primary Operations:
* add
* deleteMin

Key property:

* deleteMinremoves and returns the
“most important” item (lowest
priority value)

* Canresolve ties arbitrarily

10

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT: Functionality

+ In lecture, we will study min priority queues but you may also
see max priority queues

= Same as minPQs, but invert the priority
add(7)

+’

+ In a PQ, the only item that matters
is the min (or max)

‘ add(1)
o+’

deleteMin()

3 1

11

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT: Example

add a with priority 5
add b with priority 3
add c with priority 4

after execution:
6->e

w =deleteMin
x =deleteMin
add d with priority 2
add e with priority 6

P Q O b

N ' X

y=deleteMin

z=deleteMin

12

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT: Example

add a with priority 5
add b with priority 3
add c with priority 4

after execution:
6->e

w =deleteMin
x =deleteMin
add d with priority 2
add e with priority 6

P Q O b

N ' X

y=deleteMin

z=deleteMin

(o

13

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

« How do Priority Queues differ from Queues? How can you implement
a Queue using a Priority Queue?

14

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT: Applications

« Run multiple programs in the operating system
= “critical” before “interactive” before “compute-intensive”

<« Triage (or treat) hospital patients in order of severity
« Order print jobs (by increasing length?)
« Forward network packets by order of urgency

+ ldentify most frequently-used symbols for data compression

+ Sorting!

" add all elements, then repeatedly deleteMin

15

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT: More Applications

+ Used heavily in greedy algorithms, where each phase of the
algorithm picks the locally optimum solution

L\ /" @ Padelford
) ot ThomSson Hall (TI:{O] 48
‘ 5 ¢ o)
. . . | . ! . N e Uniw
« Example: route finding IQsmithHal M A ook e @ 5w
®og/ Grieg Gard
" Represent a map as a ~Q & - B | ‘
Vo ¢ 0 - HUB Yard = 2
b The Un
series of segments Redsuase ¥ 1 o [Tt
]) @@ Allen Libraries | Husk‘y Union
® At each intersection, ask o e Bldg (HUB) l
. : P b |
which segment getsyou S Sieq Hel i
. . REGEoEr @ _Mary Gates Hall UW Engineering Library
closest to the destination ~ ! : Q
. . . &/ Johigon Hall (JHN) < B
(ie, has max priority or . i o
L] . % | —Y
. . [} f Electrical & A 7-|mln University
min distance) o S roniter L e
o Drumbeller Fountain o ®® v [B[@;f;gg\g
P s \J >0
Chemistry Library \ (") . N Ln NE
3uilding (CHL) \ 5’@
\ %% e !
\ (e} @9 Paul G. Allen Center
: ®° for Computer Science...
Benson Hall (BNS) o

16

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Priority Queue ADT: Possible Data Structures

Unsorted Array O (l) O(N)

Unsorted Singly-linked
Linked List

Sorted Circular Array O (M B D(l)

Sorted Doubly-linked
Linked List

Binary Search Tree (BST)

Assumptions: Worst case; Arrays have enough space

17

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Our Eventual Data Structure: The Heap

+~ Heap:
= add: O(log n), worst case
" deleteMin: O(log n), worst case
= |f items added in random order, expected case for add is O(1)
= Very good constant factors

7
0.0

Key idea: Only pay for functionality needed
= We need something better than scanning unsorted items
= But we do not need to maintain a full sorted list

ol

- We visualize our heap as a tree, so let’s review some terminology

20

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps

Lecture Outline

+ Priority Queue ADT

+ Tree Terminology and Properties

+ Binary Heap
® Tree Visualization and Operations
" Array Representation

CSE332, Spring 2021

21

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Review: Tree Terminology
+ root(T): Tree T

+ leaves(T):

« children(B):

+ parent(H):

+ siblings(E):

+ ancestors(F): B /D\
+ descendants(G):
+ subtree(G):

+ depth(B):

+ height(G):

+ height(T):

+ degree(B):

+ branching factor(T):

22

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

X2 siblings(E)D/¥

« height(T): 4

< branci/wing factor(T):
(k\)j Mean:

(o

. S

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Types of Trees
Binary tree Every node has < 2 children
N-ary tree Every node has < n children
Perfect tree Every row is completely full
All rows except possibly the bottom are
Complete tree completely full. The bottom row is filled from

left to right

Perfect Tree ﬁ

Complete Tree

24

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Perfect Tree Properties

m Number of Nodes Number of Leaves

e 4
1S %
Al [
02\'\1—1 __\ Qh

> B~ W NP

Perfect Tree
Complete Tree

25

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Lecture Outline

+ Priority Queue ADT

« Tree Terminology and Properties

+ Binary Heap
® Tree Visualization and Operations
" Array Representation

26

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Our Data Structure: Binary (Min-)Heap (1 of 3)

« More commonly known as a binary heap or simply a heap

" The “min” refers to the fact that the special priority value is the
smallest; a “max heap” tracks the largest priority

<« Structure Property: A complete binary tree

« Order Property: Every non-root node has a priority value larger
than (or possibly equal to) the priority of its parent

How is this different from a binary search tree?

27

CSE332, Spring 2021

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps

Our Data Structure: Binary (Min-)Heap (2 of 3)

« More commonly known as a binary heap or simply a heap

" The “min” refers to the fact that the special priority value is the
smallest; a “max heap” tracks the largest priority

<« Structure Property: A complete binary tree
« Order Property: Every non-root node has a priority value larger
than (or possibly equal to) the priority of its parent

(10) \/S

A Heap Not a Heap

28

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Our Data Structure: Binary (Min-)Heap (3 of 3)

< Wh is th ini iority item?
Where is the minimum priority item FOO‘SK ‘.

+ What is the height of a heap with n items?\L\ A X
YA

< Is this tree unique to this heap?

No!

Also a Heap

A Heap

29

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

« Are these valid binary min-heaps?

o e 5

A Yes, no, yes, yes

B. Yes, yes, yes, yes

c. Yes, no, no, yes
—=0. Yes, no, yes, no

e. No, no, yes, no

. I’'m not sure ...

30

Y UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Binary Heap Helper Functions

+ add: (10
® Put new node in rightmost position (20) (30)
of the last row (restore structure
property) (20) o) QY (C83)

= “Percolate up” to correct layer @ @

(restore order property)

» deleteMin: Overall strategy:

: * Preserve complete tree
" answer = root.item

structure property
= Move rightmost node in last row to

— ... which may break
root (restore structure property)

heap order property
= “Percolate down” to correct layer

e Percolate to restore heap
(restore order property)

order property

31

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Binary Heap: add()

< Put new node in rightmost position of the last row
« “Percolate up” to correct layer

2 2
e~ add(1) L~ percolateUp()
3 5 3 5
8| L5] L6 §| 5] L&]:i1;
\ 21N
3 7] <4 1

8] |s]| [e]|=] 8] [5] Le]|5

32

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

percolateUp() Helper Function

<« percolateUp():
® Put new item in new location
® |f parent larger, swap with parent, and continue
® Done when parent < item or reached root

+ Why does this work? What is the run time?

2 2(-3 /1\
Bl Bhw B i o= G B

33

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Binary Heap: removeMin()

+ Move rightmost node in last row to the root
« “Percolate down” to correct layer

2
L~ removeMin()
3 4
Z Z N\

8 5 6 9

- =)\Z 9 :
o~ /\ percolateDown(L o~
- 4 - As i - 3 >
Z O\ 7 = JEI] L
%1 14 6 2R - S 6

34

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps

CSE332, Spring 2021

percolateDown() Helper Function

+ percolateDown:

= Keep comparing with both children
®= Move smaller child up and go down one level

® Done if both children are > item or reached a leaf node

+ Why does this work? What is the run time?

9 3 3
3 5 - 9 i 5 - 8 5

35

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Lecture Outline

+ Priority Queue ADT

« Tree Terminology and Properties

+ Binary Heap
® Tree Visualization and Operations
= Array Representation

36

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

A Clever Trick for Storing the Heap...

+ All complete trees of size n contain the same edges
" So why are we even representing the edges?
= We should only pay for the functionality we need!!

37

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Array Representation of a Binary Heap

+ In lecture and in Weiss, skip index 0 to make the math simpler
® Though, it’s a good place to store the current size of the heap
= P1 doesn’t skip; starts counting from O

«» From node i:
= eft child: 2\

" right child:2)| +

" parent; |
1=
B

C D E F G H I J K L

38

YA UNIVERSITY of WASHINGTON

Pseudocode: add()

LO6: Priority Queue ADT; Heaps

volid insert (int wval) {

14

if (size == arr.length-1)
resize();

size++;

1 = percolateUp(size,val);

arr[i] = val;

CSE332, Spring 2021

int percolateUp(int hole,

int val) {
(hole > 1 &&
val < arrl[hole/2]) {
arr[hole] = arrl[hole/2];
hole = hole / 2;

while

}

return hole;

}

Disclaimers:

. This pseudocode uses ints. In real use, you
will have nodes with priorities and values

. P1 doesn’t skip; starts counting from 0
10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13,

YA UNIVERSITY of WASHINGTON

LO6: Priority Queue ADT; Heaps

CSE332, Spring 2021

Pseudocode: deleteMin()

int deleteMin ()

arr [hole] =
size—--;
return ans;

{

if (isEmpty()) throw ..
ans = arr[1l];
hole = percolateDown (

1, arr[size]);
arr[sizel];

int percolateDown (int hole,
int val) {
while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (arr[left] < arr[right]
| | right > size)

target = left;

else
target = right;

if (arr[target] < wval) {
arr[hole] = arr([target];
hole = target;

} else
break;

}

return hole;

}

60

85

99 | 700 | 50

13 &

W UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

1. add: 16, 32, 4,57, 80, 43, 2
2. deleteMin

41

YA UNIVERSITY of WASHINGTON LO6: Priority Queue ADT; Heaps CSE332, Spring 2021

Activity Answer: After add()s

1. add: 16, 32, 4,57, 80, 43, 2
2. deleteMin

42

YA UNIVERSITY of WASHINGTON

LO6: Priority Queue ADT; Heaps

Activity Answer: After deleteMin()

1.

2.

add: 16, 32, 4,57, 80, 43, 2

deleteMin

32

57

80

43

CSE332, Spring 2021

43

