
CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT; Heaps
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L06: Priority Queue ADT; Heaps

❖ What is the difference between a binary tree and a binary search tree?

2

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Announcements

❖ P1: Congrats on completing Checkpoint 1!

▪ (if you didn’t fill out the survey, you still can until tomorrow night
(PDT)

❖ Reminder that we will NOT answer concept questions in office
hours after the quiz is released on Tuesday

▪ Get your questions in now!

3

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation

4

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

ADTs So Far (1 of 3)

5

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index

• A list has a size defined as the

number of elements in the list

• Elements can be added to the

front, back, or any index in the list

• Optionally, elements can be

removed from the front, back, or

any index in the list

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

ADTs So Far (2 of 3)

6

Queue ADT. A collection storing

an ordered sequence of

elements.

• A queue has a size defined as

the number of elements in

the queue

• Elements can only be added

to one end and removed from

the other (“FIFO”)

Stack ADT. A collection storing

an ordered sequence of

elements.

• A stack has a size defined as

the number of elements in

the stack

• Elements can only be added

and removed from the top

(“LIFO”)

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

ADTs So Far (3 of 3)

7

Set ADT. A collection of values.

• A set has a size defined as the

number of elements in the set

• You can add and remove values,

but the contained values are

unique

• Each value is accessible via a “get”

operation

Dictionary ADT. A collection of keys,

each associated with a value.

• A dictionary has a size defined as

the number of elements in the

dictionary

• You can add and remove (key,

value) pairs, but the keys are

unique

• Each value is accessible by its key

via a “find” or “contains” operation

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

A Scenario

❖ What is the difference between waiting for service at a
pharmacy versus an ER?

▪ Pharmacies usually follow the rule “First Come, First Served”

▪ Emergency Rooms assign priorities based on each individual's need

8

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

A New ADT: Priority Queue

❖ See Weiss Chapter 6

❖ A priority queue holds compare-able data

▪ Unlike lists, stacks, and queues, we need to compare items

• Given x and y: is x less than, equal to, or greater than y?

• Much of this course will require comparable items: e.g. sorting

▪ Typically two fields: the priority and the data

❖ For simplicity in lecture, we’ll suppose data are ints and that
the same int value is also the priority

▪ int priorities are common, but really just need Comparable

▪ Not having “other data” is very rare

• Example: print job has a priority and the file to print

9

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: Intro

10

Priority Queue ADT. A collection

storing a set of elements and

their priority.

• A PQ has a size defined as the

number of elements in the set

• You can add elements (and their

priorities)

• You cannot access or remove

arbitrary elements, only the

element with the min priority

Primary Operations:
• add

• deleteMin

Key property:
• deleteMin removes and returns the

“most important” item (lowest
priority value)

• Can resolve ties arbitrarily

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: Functionality

❖ In lecture, we will study min priority queues but you may also
see max priority queues

▪ Same as minPQs, but invert the priority

❖ In a PQ, the only item that matters
is the min (or max)

11

2deleteMin() 13

9

5
4

4
9

513

add(7)

2

1

13

9

5
4

7

add(1)

7 1513

9

5
4

7 2

2 13

9

5
4

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: Example

add a with priority 5

add b with priority 3

add c with priority 4

w = deleteMin

x = deleteMin

add d with priority 2

add e with priority 6

y = deleteMin

z = deleteMin

12

after execution:

6->e

w = b

x = c

y = d

z = a

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: Example

add a with priority 5

add b with priority 3

add c with priority 4

w = deleteMin

x = deleteMin

add d with priority 2

add e with priority 6

y = deleteMin

z = deleteMin

13

after execution:

6->e

w = b

x = c

y = d

z = a

CSE332, Spring 2021

gradescope.com/courses/256241

L06: Priority Queue ADT; Heaps

❖ How do Priority Queues differ from Queues? How can you implement
a Queue using a Priority Queue?

14

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: Applications

❖ Run multiple programs in the operating system
▪ “critical” before “interactive” before “compute-intensive”

❖ Triage (or treat) hospital patients in order of severity

❖ Order print jobs (by increasing length?)

❖ Forward network packets by order of urgency

❖ Identify most frequently-used symbols for data compression

❖ Sorting!

▪ add all elements, then repeatedly deleteMin

15

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: More Applications

❖ Used heavily in greedy algorithms, where each phase of the
algorithm picks the locally optimum solution

❖ Example: route finding

▪ Represent a map as a
series of segments

▪ At each intersection, ask
which segment gets you
closest to the destination
(ie, has max priority or
min distance)

16

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Priority Queue ADT: Possible Data Structures

17
Assumptions: Worst case; Arrays have enough space

add deleteMin

Unsorted Array

Unsorted Singly-linked
Linked List

Sorted Circular Array

Sorted Doubly-linked
Linked List

Binary Search Tree (BST)

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Our Eventual Data Structure: The Heap

❖ Heap:

▪ add: O(log n), worst case

▪ deleteMin: O(log n), worst case

▪ If items added in random order, expected case for add is O(1)

▪ Very good constant factors

❖ Key idea: Only pay for functionality needed

▪ We need something better than scanning unsorted items

▪ But we do not need to maintain a full sorted list

❖ We visualize our heap as a tree, so let’s review some terminology

20

1 7 1513

9

5
4

7 2

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation

21

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Review: Tree Terminology
❖ root(T):

❖ leaves(T):

❖ children(B):

❖ parent(H):

❖ siblings(E):

❖ ancestors(F):

❖ descendants(G):

❖ subtree(G):

❖ depth(B):

❖ height(G):

❖ height(T):

❖ degree(B):

❖ branching factor(T):

22

A

E

B

D F

C

G

IH

LJ MK N

Tree T

CSE332, Spring 2021

gradescope.com/courses/256241

L06: Priority Queue ADT; Heaps

❖ siblings(E):

❖ height(T):

❖ branching factor(T):

23

A

E

B

D F

C

G

IH

LJ MK N

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Types of Trees

24

Perfect Tree
Complete Tree

Binary tree Every node has ≤ 2 children

N-ary tree Every node has ≤ n children

Perfect tree Every row is completely full

Complete tree
All rows except possibly the bottom are

completely full. The bottom row is filled from
left to right

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Perfect Tree Properties

25

Perfect Tree
Complete Tree

Height Number of Nodes Number of Leaves

1

2

3

4

h

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation

26

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Our Data Structure: Binary (Min-)Heap (1 of 3)

❖ More commonly known as a binary heap or simply a heap

▪ The “min” refers to the fact that the special priority value is the
smallest; a “max heap” tracks the largest priority

❖ Structure Property: A complete binary tree

❖ Order Property: Every non-root node has a priority value larger
than (or possibly equal to) the priority of its parent

27

How is this different from a binary search tree?

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Our Data Structure: Binary (Min-)Heap (2 of 3)

❖ More commonly known as a binary heap or simply a heap

▪ The “min” refers to the fact that the special priority value is the
smallest; a “max heap” tracks the largest priority

❖ Structure Property: A complete binary tree

❖ Order Property: Every non-root node has a priority value larger
than (or possibly equal to) the priority of its parent

28

2513

8020

30

856040

8020

10

700 50

99

A Heap Not a Heap

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Our Data Structure: Binary (Min-)Heap (3 of 3)

❖ Where is the minimum priority item?

❖ What is the height of a heap with n items?

❖ Is this tree unique to this heap?

29

856040

8020

10

700 50

99

A Heap

6040

20

700 50

Also a Heap

CSE332, Spring 2021

gradescope.com/courses/256241

L06: Priority Queue ADT; Heaps

❖ Are these valid binary min-heaps?

A. Yes, no, yes, yes

B. Yes, yes, yes, yes

C. Yes, no, no, yes

D. Yes, no, yes, no

E. No, no, yes, no

F. I’m not sure …
30

98

67

5

45

3

64

5

5

64

3

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Binary Heap Helper Functions

❖ add:

▪ Put new node in rightmost position
of the last row (restore structure
property)

▪ “Percolate up” to correct layer
(restore order property)

❖ deleteMin:

▪ answer = root.item

▪ Move rightmost node in last row to
root (restore structure property)

▪ “Percolate down” to correct layer
(restore order property)

31

Overall strategy:

• Preserve complete tree
structure property

– ... which may break
heap order property

• Percolate to restore heap
order property

856040

8020

10

700 50

99

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Binary Heap: add()

❖ Put new node in rightmost position of the last row

❖ “Percolate up” to correct layer

32

3 5

2

8 5 6

add(1) percolateUp()

3

8 5 6

3

8 5 6

3 5

2

8 5 6 1

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

percolateUp() Helper Function

❖ percolateUp():

▪ Put new item in new location

▪ If parent larger, swap with parent, and continue

▪ Done when parent item or reached root

❖ Why does this work? What is the run time?

33

3 1

2

7 5 6 5

3 2

1

7 5 6 5

3 5

2

7 5 6 1

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Binary Heap: removeMin()

❖ Move rightmost node in last row to the root

❖ “Percolate down” to correct layer

34

3 4

2

8 5 6 9

removeMin()

3 4

8 5 6 9

3 4

9

8 5 68 5 6

percolateDown()

6

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

percolateDown() Helper Function

❖ percolateDown:

▪ Keep comparing with both children

▪ Move smaller child up and go down one level

▪ Done if both children are item or reached a leaf node

❖ Why does this work? What is the run time?

35

3 5

9

8 5 6

9 5

3

8 5 6

8 5

3

9 5 6

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Lecture Outline

❖ Priority Queue ADT

❖ Tree Terminology and Properties

❖ Binary Heap

▪ Tree Visualization and Operations

▪ Array Representation

36

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

A Clever Trick for Storing the Heap…

❖ All complete trees of size n contain the same edges

▪ So why are we even representing the edges?

▪ We should only pay for the functionality we need!!

37

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Array Representation of a Binary Heap

❖ In lecture and in Weiss, skip index 0 to make the math simpler

▪ Though, it’s a good place to store the current size of the heap

▪ P1 doesn’t skip; starts counting from 0

❖ From node i:

▪ left child:

▪ right child:

▪ parent:

38

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Pseudocode: add()

39

void insert(int val) {

if (size == arr.length-1)

resize();

size++;

i = percolateUp(size,val);

arr[i] = val;

}

int percolateUp(int hole,
int val) {

while (hole > 1 &&
val < arr[hole/2]) {

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Disclaimers:

• This pseudocode uses ints. In real use, you
will have nodes with priorities and values

• P1 doesn’t skip; starts counting from 0

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Pseudocode: deleteMin()

40

int deleteMin() {

if(isEmpty()) throw …

ans = arr[1];

hole = percolateDown(

1, arr[size]);

arr[hole] = arr[size];

size--;

return ans;

}

int percolateDown(int hole,
int val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if (arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

996040

8020

10

700 50

85

CSE332, Spring 2021

gradescope.com/courses/256241

L06: Priority Queue ADT; Heaps

1. add: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

4141

0 1 2 3 4 5 6 7

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Activity Answer: After add()s

1. add: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

4242

2 32 4 57 80 43 16

0 1 2 3 4 5 6 7

168057

432

2

43

CSE332, Spring 2021L06: Priority Queue ADT; Heaps

Activity Answer: After deleteMin()

1. add: 16, 32, 4, 57, 80, 43, 2

2. deleteMin

4343

4 32 16 57 80 43

0 1 2 3 4 5 6 7

8057

1632

4

43

