# Priority Queue ADT; Heaps 

CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:
Aayushi Modi Khushi Chaudhari
Patrick Murphy
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Richard Jiang
Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

## *ll gradescope

*. What is the difference between a binary tree and a binary search tree?

## Announcements

*P1: Congrats on completing Checkpoint 1!

- (if you didn't fill out the survey, you still can until tomorrow night (PDT)
* Reminder that we will NOT answer concept questions in office hours after the quiz is released on Tuesday
- Get your questions in now!


## Lecture Outline

* Priority Queue ADT
* Tree Terminology and Properties
* Binary Heap
- Tree Visualization and Operations
- Array Representation


## ADTs So Far (1 of 3)

List ADT. A collection storing an ordered sequence of elements.

- Each element is accessible by a zero-based index
- A list has a size defined as the number of elements in the list
- Elements can be added to the front, back, or any index in the list
- Optionally, elements can be removed from the front, back, or any index in the list


## ADTs So Far (2 of 3)

Stack ADT. A collection storing
Queue ADT. A collection storing an ordered sequence of elements.

- A stack has a size defined as the number of elements in the stack
- Elements can only be added and removed from the top ("LIFO")
an ordered sequence of elements.
- A queue has a size defined as the number of elements in the queue
- Elements can only be added to one end and removed from the other ("FIFO")


## ADTs So Far (3 of 3)

Set ADT. A collection of values.

- A set has a size defined as the number of elements in the set
- You can add and remove values, but the contained values are unique
- Each value is accessible via a "get" operation

Dictionary ADT. A collection of keys, each associated with a value.

- A dictionary has a size defined as the number of elements in the dictionary
- You can add and remove (key, value) pairs, but the keys are unique
- Each value is accessible by its key via a "find" or "contains" operation


## A Scenario

* What is the difference between waiting for service at a pharmacy versus an ER?
- Pharmacies usually follow the rule "First Come, First Served"
- Emergency Rooms assign priorities based on each individual's need


## A New ADT: Priority Queue

* See Weiss Chapter 6
* A priority queue holds compare-able data
- Unlike lists, stacks, and queues, we need to compare items
- Given $x$ and $y$ : is $x$ less than, equal to, or greater than $y$ ?
- Much of this course will require comparable items: e.g. sorting
- Typically two fields: the priority and the data
* For simplicity in lecture, we'll suppose data are ints and that the same int value is also the priority
- int priorities are common, but really just need Comparable
- Not having "other data" is very rare
- Example: print job has a priority and the file to print


## Priority Queue ADT: Intro

Priority Queue ADT. A collection storing a set of elements and their priority.

- A PQ has a size defined as the number of elements in the set
- You can add elements (and their priorities)
- You cannot access or remove arbitrary elements, only the element with the min priority

Primary Operations:

- add
- deleteMin

Key property:

- deleteMin removes and returns the "most important" item (lowest priority value)
- Can resolve ties arbitrarily


## Priority Queue ADT: Functionality

* In lecture, we will study min priority queues but you may also see max priority queues
- Same as minPQs, but invert the priority
* In a PQ, the only item that matters is the $\min$ (or max)



## Priority Queue ADT: Example

add $a$ with priority 5
add $b$ with priority 3
add $c$ with priority 4
$w=$ deleteMin
$x=$ deleteMin
add $d$ with priority 2
add $e$ with priority 6
$y=$ deleteMin
$z=$ deleteMin

$$
\begin{aligned}
& \text { after execution: } \\
& 6->e \\
& w=b \\
& x=c \\
& y=d \\
& z=a
\end{aligned}
$$

## Priority Queue ADT: Example

add $a$ with priority 5
add $b$ with priority 3
add $c$ with priority 4
$w=$ deleteMin
$x=$ deleteMin
add $d$ with priority 2
add $e$ with priority 6
$y=$ deleteMin
$z=$ deleteMin

$$
\begin{aligned}
& \text { after execution: } \\
& 6->e \\
& w=b \\
& x=c \\
& y=d \\
& z=a
\end{aligned}
$$

## *ll gradescope

* How do Priority Queues differ from Queues? How can you implement a Queue using a Priority Queue?


## Priority Queue ADT: Applications

* Run multiple programs in the operating system
- "critical" before "interactive" before "compute-intensive"
* Triage (or treat) hospital patients in order of severity
* Order print jobs (by increasing length?)
* Forward network packets by order of urgency
* Identify most frequently-used symbols for data compression
* Sorting!
- add all elements, then repeatedly deleteMin


## Priority Queue ADT: More Applications

* Used heavily in greedy algorithms, where each phase of the algorithm picks the locally optimum solution
* Example: route finding
- Represent a map as a series of segments
- At each intersection, ask which segment gets you closest to the destination (ie, has max priority or min distance)



## Priority Queue ADT: Possible Data Structures

|  | add | deleteMin |
| :--- | :---: | :---: |
| Unsorted Array | O(1) | O(N) |
| Unsorted Singly-linked <br> Linked List |  |  |
| Sorted Circular Array | O(N) | O(1) |
| Sorted Doubly-linked <br> Linked List |  |  |
| Binary Search Tree (BST) |  |  |

Assumptions: Worst case; Arrays have enough space

## Our Eventual Data Structure: The Heap

* Heap:
- add: O(log n), worst case
- deleteMin: O(log n), worst case
- If items added in random order, expected case for add is O(1)
- Very good constant factors
* Key idea: Only pay for functionality needed
- We need something better than scanning unsorted items
- But we do not need to maintain a full sorted list

*We visualize our heap as a tree, so let's review some terminology


## Lecture Outline

* Priority Queue ADT
* Tree Terminology and Properties
* Binary Heap
- Tree Visualization and Operations
- Array Representation


## Review: Tree Terminology

* $\operatorname{root}(\mathrm{T})$ :
* leaves(T):
* children(B):
* parent(H):
* siblings(E):
* ancestors(F): B/A
* descendants(G):
* subtree(G):
* depth(B):
* height(G):
* height(T):
* degree(B):

* branching factor( T ):



## Types of Trees

Binary tree
N -ary tree
Perfect tree

Complete tree

Every node has $\leq 2$ children
Every node has $\leq \mathrm{n}$ children
Every row is completely full
All rows except possibly the bottom are completely full. The bottom row is filled from left to right


Perfect Tree


Perfect Tree Properties


## Lecture Outline

* Priority Queue ADT
* Tree Terminology and Properties
* Binary Heap
- Tree Visualization and Operations
- Array Representation


## Our Data Structure: Binary (Min-)Heap (1 of 3)

* More commonly known as a binary heap or simply a heap
- The "min" refers to the fact that the special priority value is the smallest; a "max heap" tracks the largest priority
* Structure Property: A complete binary tree
* Order Property: Every non-root node has a priority value larger than (or possibly equal to) the priority of its parent

How is this different from a binary search tree?

## Our Data Structure: Binary (Min-)Heap (2 of 3)

* More commonly known as a binary heap or simply a heap
- The "min" refers to the fact that the special priority value is the smallest; a "max heap" tracks the largest priority
* Structure Property: A complete binary tree
* Order Property: Every non-root node has a priority value larger than (or possibly equal to) the priority of its parent


A Heap


Not a Heap

## Our Data Structure: Binary (Min-)Heap (3 of 3)

* Where is the minimum priority item?

* What is the height of a heap with $n$ items?
* Is this tree unique to this heap?

*ilgradescope
* Are these valid binary min-heaps?

A. Yes, no, yes, yes
в. Yes, yes, yes, yes
c. Yes, no, no, yes
D. Yes, no, yes, no
e. No, no, yes, no
f. I'm not sure ...


## Binary Heap Helper Functions

* add:
- Put new node in rightmost position of the last row (restore structure property)
- "Percolate up" to correct layer (restore order property)
* deleteMin:
- answer = root.item
- Move rightmost node in last row to root (restore structure property)
- "Percolate down" to correct layer (restore order property)


Overall strategy:

- Preserve complete tree structure property
- ... which may break heap order property
- Percolate to restore heap order property


## Binary Heap: add()

* Put new node in rightmost position of the last row
* "Percolate up" to correct layer



## percolateUp() Helper Function

* percolateUp():
- Put new item in new location
- If parent larger, swap with parent, and continue
- Done when parent $\leq$ item or reached root
* Why does this work? What is the run time?



## Binary Heap: removeMin()

* Move rightmost node in last row to the root
* "Percolate down" to correct layer



## percolateDown() Helper Function

* percolateDown:
- Keep comparing with both children
- Move smaller child up and go down one level
- Done if both children are $\geq$ item or reached a leaf node
* Why does this work? What is the run time?



## Lecture Outline

* Priority Queue ADT
* Tree Terminology and Properties
* Binary Heap
- Tree Visualization and Operations
- Array Representation


## A Clever Trick for Storing the Heap...

* All complete trees of size n contain the same edges
- So why are we even representing the edges?
- We should only pay for the functionality we need!!

Array Representation of a Binary Heap

* In lecture and in Weiss, skip index 0 to make the math simpler
- Though, it's a good place to store the current size of the heap
- P1 doesn't skip; starts counting from 0
* From node i:
- left child: $2 i$
- right child: $2 i+1$
- parent: $\left\lfloor\frac{i}{2}\right\rfloor$


|  | A | B | C | D | E | F | G | H | I | J | K | L |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

## Pseudocode: add()

```
void insert(int val)
    if (size == arr.length-1)
        resize();
    size++;
    i = percolateUp(size,val);
    arr[i] = val;
}
```

```
int percolateUp(int hole,
                        int val)
    while (hole > 1 &&
        val < arr[hole/2]) {
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    }
    return hole;
}
```

Disclaimers:

- This pseudocode uses ints. In real use, you will have nodes with priorities and values
- P1 doesn't skip; starts counting from 0

|  | 10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Pseudocode: deleteMin()

```
int deleteMin() {
    if(isEmpty()) throw ...
    ans = arr[1];
    hole = percolateDown(
        1, arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```



```
int percolateDown(int hole,
                                    int val)
    while (2*hole <= size) {
    left = 2*hole;
    right = left + 1;
    if (arr[left] < arr[right]
                right > size)
            target = left;
        else
            target = right;
        if (arr[target] < val)
        arr[hole] = arr[target];
        hole = target;
        } else
        break;
    }
    return hole;
}
```

|  | 10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

## *lı gradescope

1. add: $16,32,4,57,80,43,2$
2. deleteMin


Activity Answer: After add()s

1. add: $16,32,4,57,80,43,2$
2. deleteMin

|  | 2 | 32 | 4 | 57 | 80 | 43 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0
1
23

4
6


Activity Answer: After deleteMin()

1. add: $16,32,4,57,80,43,2$
2. deleteMin

|  | 4 | 32 | 16 | 57 | 80 | 43 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1
2
3
4
5
6
7


