Algorithm Analysis III: Recurrences CSE 332 Spring 2021

Instructor: Hannah C. Tang

Guest Lecturer: Kris Wong

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

Announcements

- Project 1 Checkpoint tomorrow
 - Will release on Gradescope at midnight
 - No penalty if you haven't met the checkpoint
- Quiz 1 released next Tuesday!
 - We will be posting Quiz 1 from Autumn on the website this afternoon
 - Recordings of TA's walking through the problems from last quarter will be posted to Panopto

- Quiz 1 topics list
 - ADT vs Data Structure
 - Lists, Stacks, Queues
 - Sets, Dictionaries, Tries
 - Asymptotic Analysis
 - Big Oh, Theta, Omega
 - Formal Definitions
 - Amortization
 - Recurrences (Today!)
 - Priority Queues, Heaps (Friday / Monday)

gradescope

gradescope.com/courses/256241

Recall our find() method from several lectures back:

```
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
  for(int i=0; i < arr.length; ++i)
    if(arr[i] == k)
    return true;
  return false;
}</pre>
```

- Reimplement this method using recursion
 - Hint: you may need a helper function
- What is the base case for your recursive method?

Learning Objectives

- Understand when asymptotic analysis is useful and when it is not
- Be able to use both the expansion method and the tree method, to find the closed-form of a recurrence relation

Lecture Outline

- Algorithm Analysis III
 - Closing thoughts on Big Oh
 - Analyzing Recursive Code
 - Linear Search example
 - Binary Search example
 - Binary Linear Sum example

Closing Thoughts: Multivariable

- big-Oh can also use more than one variable
 - Example: can sum all elements of an n-by-m matrix in O(nm)

Closing Thoughts: When NOT to Use Big-Oh

- Asymptotic complexity (Big-Oh) describes behavior for <u>large n</u> and is independent of any computer / coding trick
- Asymptotic complexity for <u>small n</u> can be misleading
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically, $n^{1/10}$ grows more quickly
 - But the "cross-over" point (n₀) is around $5*10^{17} \approx 2^{58}$; you might prefer $n^{1/10}$
 - Example: QuickSort vs InsertionSort
 - Expected runtimes: Quicksort is O(n log n) vs InsertionSort O(n2)
 - In reality, InsertionSort is faster for small n's
 - (we'll learn about these sorts later)

Closing Thoughts: Timing vs. Big-Oh?

- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation? Timing can be useful
 - Either a hardware or a software implementation
- At the core of CS is a backbone of theory & mathematics
 - We've spent 2 ½ lectures talking about how to analyze the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards

Algorithm Analysis Summary (1 of 2)

- What are we analyzing: Problem or the algorithm
- Metric: Time or space
 - Or power, or dollars, or ...

Complexity Bounds:

- Describing curve shapes "at infinity"
 - 'c' allows us to ignore effect of multiplicative constants on curve shape
 - 'n₀' allows us to ignore effect of low-order terms on curve shape
- Upper bound: big-O or little-o
- **Lower bound**: big-Ω or little-ω
- Tight bound: Θ

Algorithm Analysis Summary (2 of 2)

- Complexity Cases: two different dimensions:
 - The specific path through an algorithm for input of size N
 - Worst-case: max # steps on "most challenging" input
 - Best-case: min # steps on "easiest" input
 - Average-case: varying definitions, typically not used in 332
 - Number of executions considered
 - Single-execution
 - Multiple-execution: amortized case is only one of several techniques for combining executions

Usually:

 We analyze the <u>algorithm's time</u> complexity to understand its <u>upper or</u> <u>tight</u> bound for a <u>single-execution's worst-case</u>

Lecture Outline

- Algorithm Analysis III
 - Closing thoughts on Big Oh
 - Analyzing Recursive Code
 - Linear Search example
 - Binary Search example
 - Binary Linear Sum example

Analyzing Code

- Basic operations take "some amount of" constant time
 - Arithmetic
 - Assignment
 - Access one Java field or array index
 - Etc.
 - (Again, this is an approximation of reality)

Consecutive statements	Sum of time of each statement
Loops	Num iterations * time for loop body
Recurrence	Solve recurrence equation
Function Calls	Time of function's body
Conditionals	Time of condition + time of {slower/faster} branch

Analyzing Iterative Code: Linear Search

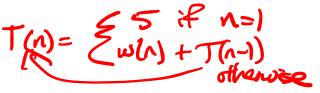
Find an integer in a *sorted* array

2 3 5	16	37	50	73	75	126
-------	----	----	----	----	----	-----

```
requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k)
           i=0; i < arr.length; (++i
    if(arr[i] == k)
                              Best case: 6 "ish" steps = O(1)
      return true;
  return false;
                              Worst case: 5 "ish" * (arr.length) + 1
                                              = O(arr.length)
                              Runtime expression:
                                T(n)=1+50
```

Analyzing Recursive Code

- Computing runtimes gets interesting with recursion
- Example: compute something recursively on a list of size n. Conceptually, in each recursive call we:
 - Perform some amount of work; call it w(n)
 - Call the function recursively with a smaller portion of the list
- If reduce the problem size by 1 during each recursive call, the runtime expression is:
 - *Recursive case*: T(n) = w(n) + T(n-1)
 - Base case: T(1) = 5 = O(1)



Recursive part of the expression is the "recurrence relation"

Example Recursive Code: Summing an Array

- We can ignore sum's contribution to the runtime since it's called once and does a constant amount of work
- Each time help is called, it does that a constant amount of work, and then calls help again on a problem one less than previous problem size
- Runtime Relation:

$$T(n) = \begin{cases} 3 & \text{if } n = 0 \\ 5 & \text{otherwise} \end{cases}$$

```
int sum(int[] arr) {
  return help(arr, 0);
}

int help(int[]arr,int i) {
  if(i == arr.length)
    return 0;
  return arr[i] + help(arr, i+1);
}
```

Solving Recurrence Relations: Expansion (1 of 2)

- Now we just need to solve our recurrence relation
 - ie, reduce it to a closed form
- Use Technique #1: Expansion
 - Also known as "unrolling"
- Basically, we write it out to find the general-form expansion

$$T(n) = 5 + (f(n-1))$$
 expansion 1
 $= 5 + (5 + (f(n-2)))$ expansion 1
 $= 5 + (5 + (f(n-2)))$ expansion 1
 $= 5 + (f(n-1))$ expansion 1

Solving Recurrence Relations: Expansion (2 of 2)

• We have a general-form expansion:

$$T(n) = 5k + T(n-k)$$

And a base case:

$$T(0) = 3$$

when n=k=0

- When do we hit the base case?
 - When n-k = 0!

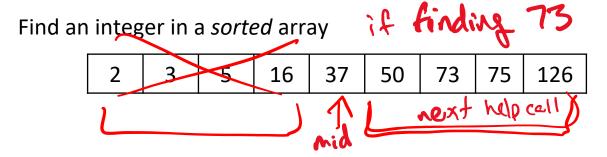
$$T(N) = 5n + T(n-n)$$

= $5n + T(0)$
= $5n + 3$
 $T(n) \in O(n)$

Lecture Outline

- Algorithm Analysis III
 - Closing thoughts on Big Oh
 - Analyzing Recursive Code
 - Linear Search example
 - Binary Search example
 - Binary Linear Sum example

Example Recursive Code: Binary Search



Example Recursive Code: Binary Search

```
T(\Lambda) = \begin{cases} 5 \text{ ish } & \text{if } \Lambda = 1 \\ 7 \text{ ish } + T(\frac{1}{2}) & \text{thereise} \end{cases}
Recursive case:
T(\Lambda) = \begin{cases} C_1 & \text{if } \Lambda = 1 \\ C_2 + T(\frac{1}{2}) & \text{otherwise} \end{cases}
Recursive (all on ½)
```

Technique #1: Expansion

Determine the recurrence relation and base case

2. "Expand" the original relation to find the general-form expression in terms of the number of expansions

$$T(n) = C_1 + T(\frac{1}{2}) + \frac{1}{2}$$

$$= C_1 + (C_2 + T(\frac{1}{2})) + \frac{1}{2}$$

$$= C_1 + (C_2 + T(\frac{1}{2})) + \frac{1}{2}$$

$$= C_1 + C_2 + T(\frac{1}{2})$$

$$= K \cdot C_1 + T(\frac{1}{2})$$

Find the closed-form expression by setting the number of expansions to a value which reduces to a base case

Base Case:
$$\frac{1}{2^n} = \frac{1}{2^n} = \frac{1}{$$

Lecture Outline

- Algorithm Analysis III
 - Closing thoughts on Big Oh
 - Analyzing Recursive Code
 - Linear Search example
 - Binary Search example
 - Binary Linear Sum example

Summing an Array, Again (1 of 5)

Two "obviously" linear algorithms:

Iterative:

int sum(int[] arr) { int ans = 0; for (int i=0; i < arr.length; ++i) ans += arr[i]; return ans; }</pre>

Recursive:


```
int sum(int[] arr) {
  return help(arr,0);
}
int help(int[]arr,int i) {
  if (i == arr.length)
    return 0;
  return arr[i] + help(arr, i+1);
}
```

Summing an Array, Again (2 of 5)

- What about a <u>binary</u> version of <u>sum</u>?
 - Can we get a BinarySearch-like runtime?

```
int sum(int[] arr) {
   return help(arr, 0, arr.length);
}
int help(int[] arr, int lo, int hi) {
   if(lo == hi)         return 0;
   if(lo == hi-1)         return arr[lo];
   int mid = (hi+lo)/2;
   return help(arr, lo, mid) + help(arr, mid, hi);
}
```

Summing an Array, Again (3 of 5)

$$T(\Lambda) = \begin{cases} C_1 & \text{if } \Lambda = 1 \\ C_2 + 2T(\frac{\Lambda}{2}) & \text{otherwise} \end{cases}$$

Expansion:

 $T(\Lambda) = C_3 + 2T(\frac{\Lambda}{2})$
 $= C_3 + (2C_3 + 4T(\frac{\Lambda}{2}))$
 $= C_3 + (2C_3 + (4C_3 + 8T(\frac{\Lambda}{2})))$
 $= C_3 + (2C_3 + (4C_3 + (8C_3 + 16T(\frac{\Lambda}{12}))))$
 $= \sum_{i=1}^{3} 2^i \cdot C_3 + 2^i \cdot T(\frac{\Lambda}{2})$

EXPA
$$1 = 2^{\circ}$$

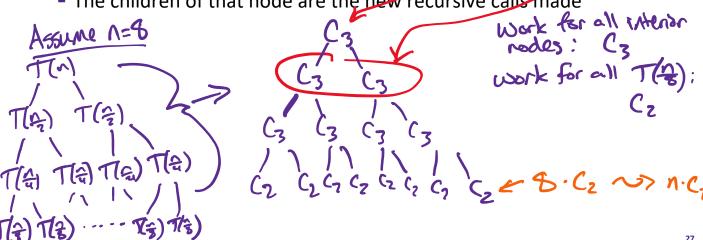
EXPA $2 + 2 = 2^{\circ} + 2^{\circ}$
EXPA $3 + 2 + 4 = 2^{\circ} + 2^{1} + 2^{\circ}$
EXPA $4 + 2 + 4 + 8 = 2^{\circ} + 2^{\circ}$

Exon k

Technique #2: Tree Method

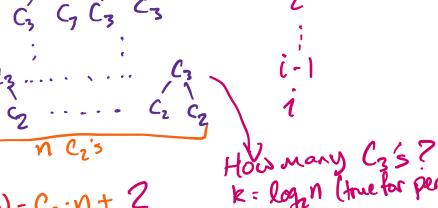
Idea: We'll do the same reasoning, but give ourselves a visual to make the organization easier

- Each node of the tree represents one recursive call
- The children of that node are the new recursive calls made



Summing an Array, Again (4 of 5) Level (intrae)

$$2^{k-1}$$
 2^k (k=height)



k = logen (frue for perfect binary trees like the)
#(5= 500-1; Closed Summation:

$$T(n) = C_2 \cdot n + \frac{1}{2}$$
 $K = \log_2 n + \frac{1}{2}$
 $T(n) = C_2 \cdot n + \frac{1}{2}$
 $K = \log_2 n + \frac{1}{2$

Summing an Array, Again (5 of 5)

- n: it adds each number and looking at all elements Runtime is:
- Observation: it adds each number once while doing little else
 - Can't do better than O(n); have to read whole array!

```
int sum(int[] arr) {
   return help(arr, 0, arr.length);
int help(int[] arr, int lo, int hi) {
  if(lo == hi) return 0;
   if(lo == hi-1) return arr[lo];
  int mid = (hi+lo)/2;
   return help(arr, lo, mid) + help(arr, mid, hi);
```

Parallelism Teaser

- But suppose we could do two recursive calls at the same time
- If you have as much parallelism as needed, the recurrence becomes
 - T(n) = O(1) + 1 T(n/2) \in Same as Binary Search! $O(\log n)$

```
int sum(int[] arr) {
   return help(arr, 0, arr.length);
}
int help(int[] arr, int lo, int hi) {
   if(lo == hi)         return 0;
   if(lo == hi-1)         return arr[lo];
   int mid = (n1+lo)/2;
   return(help(arr, lo, mid) + help(arr, mid, hi);
}
```

Really Common Recurrences

Recurrence Relation	Closed Form	Name	Example
T(n) = O(1) + T(n/2)	O(log n)	Logarithmic	Binary Search
T(n) = O(1) + T(n-1)	O(n)	Linear	Sum (v1: "Recursive Sum")
T(n) = O(1) + 2T(n/2)	O(n)	Linear	Sum (v2: "Recursive Binary Sum")
T(n) = O(n) + T(n/2)	O(n)	Linear	
T(n) = O(n) + 2T(n/2)	O(n log n)	Loglinear	MergeSort
T(n) = O(n) + T(n-1)	$O(n^2)$	Quadratic	
T(n) = O(1) + 2T(n-1)	O(2 ⁿ)	Exponential	Fibonacci