# Algorithm Analysis III: Recurrences CSE 332 Spring 2021 

Instructor: Hannah C. Tang<br>Guest Lecturer: Kris Wong

Teaching Assistants:
Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Richard Jiang
Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

## Announcements

* Project 1 Checkpoint tomorrow
- Will release on Gradescope at midnight
- No penalty if you haven't met the checkpoint
* Quiz 1 released next Tuesday!
- We will be posting Quiz 1 from Autumn on the website this afternoon
- Recordings of TA's walking through the problems from last quarter will be posted to Panopto
* Quiz 1 topics list
- ADT vs Data Structure
- Lists, Stacks, Queues
- Sets, Dictionaries, Tries
- Asymptotic Analysis
- Big Oh, Theta, Omega
- Formal Definitions
- Amortization
- Recurrences (Today!)
- Priority Queues, Heaps (Friday / Monday)


## „ll gradescope

* Recall our find () method from several lectures back:

```
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
    return false;
}
```

* Reimplement this method using recursion
- Hint: you may need a helper function
* What is the base case for your recursive method?


## Learning Objectives

* Understand when asymptotic analysis is useful and when it is not
* Be able to use both the expansion method and the tree method, to find the closed-form of a recurrence relation


## Lecture Outline

* Algorithm Analysis III
- Closing thoughts on Big Oh
- Analyzing Recursive Code
- Linear Search example
- Binary Search example
- Binary Linear Sum example


## Closing Thoughts: Multivariable

* big-Oh can also use more than one variable
- Example: can sum all elements of an $n$-by-m matrix in $O(n m)$


## Closing Thoughts: When NOT to Use Big-Oh

* Asymptotic complexity (Big-Oh) describes behavior for large $\boldsymbol{n}$ and is independent of any computer / coding trick
* Asymptotic complexity for small $\boldsymbol{n}$ can be misleading
- Example: $n^{1 / 10}$ vs. log $n$
- Asymptotically, $n^{1 / 10}$ grows more quickly
- But the "cross-over" point $\left(n_{0}\right)$ is around $5^{*} 10^{17} \approx 2^{58}$; you might prefer $n^{1 / 10}$
- Example: QuickSort vs InsertionSort
- Expected runtimes: Quicksort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ vs InsertionSort $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- In reality, InsertionSort is faster for small n's
- (we'll learn about these sorts later)


## Closing Thoughts: Timing vs. Big-Oh?

* Evaluating an algorithm? Use asymptotic analysis
* Evaluating an implementation? Timing can be useful
- Either a hardware or a software implementation
* At the core of CS is a backbone of theory \& mathematics
- We've spent $21 / 2$ lectures talking about how to analyze the algorithm itself, mathematically, not the implementation
- Reason about performance as a function of $n$
* Yet, timing has its place
- In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
- Ex: Benchmarking graphics cards


## Algorithm Analysis Summary (1 of 2)

* What are we analyzing: Problem or the algorithm
* Metric: Time or space
- Or power, or dollars, or ...
* Complexity Bounds:
- Describing curve shapes "at infinity"
- ' $c$ ' allows us to ignore effect of multiplicative constants on curve shape
- ' $\mathrm{n}_{0}$ ' allows us to ignore effect of low-order terms on curve shape
- Upper bound: big-O or little-o
- Lower bound: big- $\Omega$ or little- $\omega$
- Tight bound: ©


## Algorithm Analysis Summary (2 of 2)

* Complexity Cases: two different dimensions:
- The specific path through an algorithm for input of size N
- Worst-case: max \# steps on "most challenging" input
- Best-case: min \# steps on "easiest" input
- Average-case: varying definitions, typically not used in 332
- Number of executions considered
- Single-execution
- Multiple-execution: amortized case is only one of several techniques for combining executions
* Usually:
- We analyze the algorithm's time complexity to understand its upper or tight bound for a single-execution's worst-case


## Lecture Outline

* Algorithm Analysis III
- Closing thoughts on Big Oh
- Analyzing Recursive Code
- Linear Search example
- Binary Search example
- Binary Linear Sum example


## Analyzing Code

* Basic operations take "some amount of" constant time
- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.
- (Again, this is an approximation of reality)

| Consecutive statements | Sum of time of each statement |
| :--- | :--- |
| Loops | Num iterations * time for loop body |
| Recurrence | Solve recurrence equation |
| Function Calls | Time of function's body |
| Conditionals | Time of condition + time of \{slower/faster\} <br> branch |

## Analyzing Iterative Code: Linear Search

Find an integer in a sorted array

| 2 | 3 | 5 | 16 | 37 | 50 | 73 | 75 | 126 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k)
    for(int i=\infty; i<<arr.lengt); ++i)
    if(arr[i]== k)
        return true;
    return false;
```

Best case: 6 "ish" steps $=O(1)$

Worst case: 5 "ish" * (arr.length) + 1 $=O$ (arr.length)

Runtime expression:

$$
T(n)=1+5 n
$$

## Analyzing Recursive Code

* Computing runtimes gets interesting with recursion
* Example: compute something recursively on a list of size n . Conceptually, in each recursive call we:
- Perform some amount of work; call it w(n)
- Call the function recursively with a smaller portion of the list
* If reduce the problem size by 1 during each recursive call, the runtime expression is:
- Recursive case: $T(n)=w(n)+T(n-1) T(n)=\left\{\begin{array}{l}5 \text { if } n=1 \\ w(n)+\pi(n-1)\end{array}\right.$
* Recursive part of the expression is the "recurrence relation"


## Example Recursive Code: Summing an Array

* We can ignore sum's contribution to the runtime since it's called once and does a constant amount of work
* Each time help is called, it does that a constant amount of work, and then calls help again on a problem one less than previous problem size
* Runtime Relation:
$T(n)=\left\{\begin{array}{l}-3 \text { it } n=0 \\ 25 \text { otherwise }\end{array}\right.$


## Solving Recurrence Relations: Expansion (1 of 2)

* Now we just need to solve our recurrence relation - ie, reduce it to a closed form
* Use Technique \#1: Expansion
- Also known as "unrolling"
* Basically, we write it out to find the general-form expansion

$$
\begin{aligned}
T(n) & =5+(T(n-1)) & & \text { expansion 1 } \\
& =5+(5+(T(n-2)) & & \exp \cap 2 \\
& =5+(5+(5+T(n-3))) & & \exp \cap 3 \\
& =\ldots & \vdots & \vdots \\
& =5 k+T(n-k) & & e x p \cap k
\end{aligned}
$$

Solving Recurrence Relations: Expansion (2 of 2)

* We have a general-form expansion:

$$
T(n)=5 k+T(n-k)
$$

recursion stops

* And a base case: when $n-k=0$

$$
T(0)=3
$$

$$
n=k
$$

* When do we hit the base case?
- When $\mathrm{n}-\mathrm{k}=0$ !

$$
\begin{aligned}
T(n) & =5 n+T(n-n) \\
& =5 n+T(0) \\
& =5 n+3 \\
& T(n) \in O(n)
\end{aligned}
$$

## Lecture Outline

* Algorithm Analysis III
- Closing thoughts on Big Oh
- Analyzing Recursive Code
- Linear Search example
- Binary Search example
- Binary Linear Sum example


## Example Recursive Code: Binary Search

Find an integer in a sorted array
if finding 73


```
// requires array is sorted
// returns whether \(k\) is in array
boolean find (int[]arr, int k) \{
    return help (arr, k, 0, arr.length);
\}
boolean help(int[] arr, int \(k\), int lo, int hi)
    int mid \(=(\) hitlo) /2; // i.e., lo+(hi-lo)/2
for \(\mathrm{f}_{\mathrm{i}}\) if(arr[mid] \(==\mathrm{k}\) ) return true;
if (arr \([\mathrm{mid}]<k)\) return help(arr, k, mid+1, hi); else return help(arr, k, lo, mid);
\}
```

Example Recursive Code: Binary Search

$$
\begin{aligned}
& \text { // requires array is sorted } \\
& \text { // returns whether } k \text { is in array } \\
& \text { boolean find(int[]arr, int k) \{ } \\
& \text { return help(arr,k,0, arr.length); } \\
& \text { \} } \\
& \text { boolean help(int[] arr, int } k \text {, int lo, int hi) \{ } \\
& \text { int mid = } \mathrm{h}+101 / 2 \text {; / ide., lo+(hi-lo)/2 } \\
& \text { if(lo==hi) return false; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { else } \\
& \text { return help(arr, k, lo, mid); }
\end{aligned}
$$

Technique \#1: Expansion

1. Determine the recurrence relation and base case

$$
T(n)=\left\{\begin{array}{c}
C_{1} \text { if } n=1 \\
C_{2}+T\left(\frac{n}{2}\right) \text { otherwise }
\end{array}\right.
$$

2. "Expand" the original relation to find the general-form expression in terms of the number of expansions

$$
\begin{aligned}
& T(n)=C_{2}+T\left(\frac{n}{2}\right) r_{i} \quad \text { exp } 1 \\
& =\frac{C_{2}+\left(C_{2}+T(n)\right)}{C_{2}} r^{2}(n) \exp \wedge 2 \\
& =\frac{C_{2}+\left(C_{2}+\left(C_{2}+T\left(\frac{n}{8}\right)\right)\right)}{3} \operatorname{la}^{3} \text { expn3 } \\
& =k \cdot c_{2}+T\left(\frac{n}{2^{2}}\right) \quad \text { expnk }
\end{aligned}
$$

3. Find the closed-form expression setting the number of expansions to a value which reduces to a base case
Base Case:

$$
\begin{aligned}
& \frac{n}{2^{k}}=1<T(n)=\log _{2} n \cdot c_{2}+T\left(\frac{n}{2^{\log _{2}}}\right) \\
& n=2^{k} \\
&\left.=4 \log _{2} n \cdot c_{2}+T c_{1}\right)=c_{2} \log ^{n} n+c_{1} \\
& \log _{2} n=k \in O(n)
\end{aligned}
$$

## Lecture Outline

* Algorithm Analysis III
- Closing thoughts on Big Oh
- Analyzing Recursive Code
- Linear Search example
- Binary Search example
- Binary Linear Sum example


## Summing an Array, Again (1 of 5)

Two "obviously" linear algorithms:

Iterative:


Recursive:

```
int sum(int[] arr) {
    int ans = 0;
    for (int i=0; i < arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

```
int sum(int[] arr)
    return help(arr,0);
}
int help(int[]arr,int i) {
    if (i == arr.length)
        return 0;
    return arr[i] + help(arr, i+1);
}
```


## Summing an Array, Again (2 of 5)

* What about a binary version of sum?
- Can we get a BinarySearch-like runtime?


Summing an Array, Again (3 of 5)

$$
T(n)=\left\{\begin{array}{l}
C_{1} \\
C_{2} \text { if } n=1 \\
C_{3}+2 T\left(\frac{n}{2}\right) \text { otherwise }
\end{array}\right.
$$

Expansion:

$$
\begin{aligned}
T(n) & =C_{3}+2 T\left(\frac{n}{2}\right) \\
& =C_{3}+\left(2 C_{3}+4 T\left(\frac{n}{4}\right)\right) \\
& =C_{3}+\left(2 C_{3}+\left(4 C_{3}+8 T\left(\frac{n}{8}\right)\right)\right) \\
& =C_{3}+\left(2 C_{3}+\left(4 C_{3}+\left(8 C_{3}+16\left(\frac{n}{16}\right)\right)\right)\right) \\
& =\sum_{i=0}^{n} i^{i} \cdot C_{3}+2^{k} \cdot T\left(\frac{n}{2^{k}}\right)
\end{aligned}
$$

$\operatorname{Expa} 1 \frac{\# C_{3} ' s}{1=2^{\circ}}$
$\operatorname{Exp} \cap 21+2=2^{\circ}+2^{1}$
Exp n $31+2+4=0^{\circ} \cdot 2^{2} 2^{2}$
$\operatorname{Expr} 41+2+4+8=$
$2^{+}+2^{2}+2^{2}+2^{3}$
Expat

Technique \#2: Tree Method

* Idea: We'll do the same reasoning, but give ourselves a visual to make the organization easier

$$
\begin{aligned}
& T(n) \rightarrow \frac{C_{3}}{}+C T\left(\frac{n}{2}\right) \\
& \text { its one recursive call } \\
& \text { he nev recursive calls made }
\end{aligned}
$$

- The children of that node are the newrecursive calls made
 Work for all interior nodes: $C_{3}$ work for all $T\left(\frac{n}{8}\right)$; $C_{2}$

$T(n)=c_{2} \cdot n+2 \quad k=\log _{2} n$ (true for perfect binary trees like the)

$$
T(n)=C_{2} \cdot n+\overline{C_{3} \cdot \sum_{i=0}^{l o n} 2^{i}} \# C_{3} s=\sum_{i=0}^{\log n-1} 2^{i}
$$

Closed Summation:

$$
T(n)=C_{2} \cdot n+C_{3}(n-1)=\left(C_{1}+C_{3}\right) n+C_{3} \in O(n)
$$

$$
\begin{aligned}
& \sum_{i=0}^{E} 2^{i}=2^{k+1}-1 \\
& \sum_{0}^{\log n-1} 2^{i}=2^{\log 1}-1=n-\frac{1}{2}
\end{aligned}
$$

## Summing an Array, Again (5 of 5)

* Runtime is:

who looking - all elements * Observation: it adds each number once while doing little else
- Can't do better than O(n); have to read whole array!

```
int sum(int[] arr)
    return help(arr, 0, arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo == hi) return 0;
    if(lo == hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr, lo, mid) + help(arr, mid, hi);
}
```


## Parallelism Teaser

* But suppose we could do two recursive calls at the same time
- If you have as much parallelism as needed, the recurrence becomes
- $T(n)=O(1)+1 T(n / 2)<$ Same as Binary Search:


```
int sum(int[] arr)
    return help(arr, 0, arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo == hi) return 0;
    if(lo == hi-1) return arr[lo];
    int mid =(nl+1O)/ L;
    return help(arr, lo, mid) +help(arr, mid, hi);
}
```


## Really Common Recurrences

| Recurrence Relation | Closed <br> Form | Name | Example |
| :---: | :---: | :---: | :---: |
| $T(n)=O(1)+T(n / 2)$ | $\mathrm{O}(\log \mathrm{n})$ | Logarithmic | Binary Search |
| $T(n)=O(1)+T(n-1)$ | O(n) | Linear | Sum (v1: "Recursive Sum") |
| $T(n)=O(1)+2 T(n / 2)$ | O(n) | Linear | Sum <br> (v2: "Recursive Binary Sum") |
| $T(n)=O(n)+T(n / 2)$ | $\mathrm{O}(\mathrm{n})$ | Linear |  |
| $T(n)=O(n)+2 T(n / 2)$ | $O(n \log n)$ | Loglinear | MergeSort |
| $T(n)=O(n)+T(n-1)$ | $O\left(\mathrm{n}^{2}\right)$ | Quadratic |  |
| $T(n)=O(1)+2 T(n-1)$ | $O\left(2^{n}\right)$ | Exponential | Fibonacci |

