
CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Algorithm Analysis III: Recurrences
CSE 332 Spring 2021

Instructor: Hannah C. Tang
Guest Lecturer: Kris Wong

Teaching Assistants:
Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Announcements

v Project 1 Checkpoint tomorrow
§ Will release on Gradescope at midnight
§ No penalty if you haven’t met the checkpoint

v Quiz 1 released next Tuesday!
§ We will be posting Quiz 1 from Autumn on the website this

afternoon
§ Recordings of TA’s walking through the problems from last quarter

will be posted to Panopto

2

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

v Quiz 1 topics list
§ ADT vs Data Structure
§ Lists, Stacks, Queues
§ Sets, Dictionaries, Tries
§ Asymptotic Analysis
• Big Oh, Theta, Omega
• Formal Definitions
• Amortization
• Recurrences (Today!)

§ Priority Queues, Heaps (Friday / Monday)

3

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

gradescope.com/courses/256241

4

v Recall our find() method from several lectures back:

v Reimplement this method using recursion
§ Hint: you may need a helper function

v What is the base case for your recursive method?

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Learning Objectives

v Understand when asymptotic analysis is useful and when it is
not

v Be able to use both the expansion method and the tree
method, to find the closed-form of a recurrence relation

5

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Lecture Outline

v Algorithm Analysis III
§ Closing thoughts on Big Oh
§ Analyzing Recursive Code
• Linear Search example
• Binary Search example
• Binary Linear Sum example

6

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Closing Thoughts: Multivariable

v big-Oh can also use more than one variable
§ Example: can sum all elements of an n-by-m matrix in O(nm)

7

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Closing Thoughts: When NOT to Use Big-Oh

v Asymptotic complexity (Big-Oh) describes behavior for large n
and is independent of any computer / coding trick

v Asymptotic complexity for small n can be misleading
§ Example: n1/10 vs. log n
• Asymptotically, n1/10 grows more quickly
• But the “cross-over” point (n0) is around 5*1017 ≈ 258; you might prefer n1/10

§ Example: QuickSort vs InsertionSort
• Expected runtimes: Quicksort is O(n log n) vs InsertionSort O(n2)
• In reality, InsertionSort is faster for small n’s
• (we’ll learn about these sorts later)

8

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Closing Thoughts: Timing vs. Big-Oh?

v Evaluating an algorithm? Use asymptotic analysis
v Evaluating an implementation? Timing can be useful
§ Either a hardware or a software implementation

v At the core of CS is a backbone of theory & mathematics
§ We’ve spent 2 ½ lectures talking about how to analyze the algorithm

itself, mathematically, not the implementation
§ Reason about performance as a function of n

v Yet, timing has its place
§ In the real world, we do want to know whether implementation A runs

faster than implementation B on data set C
§ Ex: Benchmarking graphics cards

9

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Algorithm Analysis Summary (1 of 2)

v What are we analyzing: Problem or the algorithm

v Metric: Time or space
• Or power, or dollars, or …

v Complexity Bounds:
§ Describing curve shapes “at infinity”
• ‘c’ allows us to ignore effect of multiplicative constants on curve shape
• ‘n0’ allows us to ignore effect of low-order terms on curve shape

§ Upper bound: big-O or little-o
§ Lower bound: big-Ω or little-ω
§ Tight bound: Θ

10

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Algorithm Analysis Summary (2 of 2)

v Complexity Cases: two different dimensions:
§ The specific path through an algorithm for input of size N
• Worst-case: max # steps on “most challenging” input
• Best-case: min # steps on “easiest” input
• Average-case: varying definitions, typically not used in 332

§ Number of executions considered
• Single-execution
• Multiple-execution: amortized case is only one of several techniques for

combining executions

v Usually:
§ We analyze the algorithm’s time complexity to understand its upper or

tight bound for a single-execution’s worst-case

11

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Lecture Outline

v Algorithm Analysis III
§ Closing thoughts on Big Oh
§ Analyzing Recursive Code
• Linear Search example
• Binary Search example
• Binary Linear Sum example

12

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Analyzing Code

v Basic operations take “some amount of” constant time
§ Arithmetic
§ Assignment
§ Access one Java field or array index
§ Etc.
§ (Again, this is an approximation of reality)

v

13

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Recurrence Solve recurrence equation

Function Calls Time of function’s body

Conditionals Time of condition + time of {slower/faster}
branch

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Analyzing Iterative Code: Linear Search

Find an integer in a sorted array

14

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

2 3 5 16 37 50 73 75 126

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish” * (arr.length) + 1
= O(arr.length)

Runtime expression:

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Analyzing Recursive Code

v Computing runtimes gets interesting with recursion

v Example: compute something recursively on a list of size n.
Conceptually, in each recursive call we:
§ Perform some amount of work; call it w(n)
§ Call the function recursively with a smaller portion of the list

v If reduce the problem size by 1 during each recursive call, the
runtime expression is:
§ Recursive case: T(n) = w(n) + T(n-1)
§ Base case: T(1) = 5 = O(1)

v Recursive part of the expression is the “recurrence relation”
15

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Example Recursive Code: Summing an Array

v We can ignore sum’s contribution to the runtime since it’s
called once and does a constant amount of work

v Each time help is called, it does that a constant amount of
work, and then calls help again on a problem one less than
previous problem size

v Runtime Relation:

T(n) =

16

int sum(int[] arr) {
return help(arr, 0);

}

int help(int[]arr,int i) {
if(i == arr.length)
return 0;

return arr[i] + help(arr, i+1);
}

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Solving Recurrence Relations: Expansion (1 of 2)

v Now we just need to solve our recurrence relation
§ ie, reduce it to a closed form

v Use Technique #1: Expansion
§ Also known as “unrolling”

v Basically, we write it out to find the general-form expansion
T(n) = 5 + T(n-1)

= 5 + 5 + T(n-2)
= 5 + 5 + 5 + T(n-3)
= …
= 5k + T(n-k)

17

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Solving Recurrence Relations: Expansion (2 of 2)

v We have a general-form expansion:
T(n) = 5k + T(n-k)

v And a base case:
T(0) = 3

v When do we hit the base case?
§ When n-k = 0!

18

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Lecture Outline

v Algorithm Analysis III
§ Closing thoughts on Big Oh
§ Analyzing Recursive Code
• Linear Search example
• Binary Search example
• Binary Linear Sum example

19

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Example Recursive Code: Binary Search

Find an integer in a sorted array

20

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
return help(arr,k,0,arr.length);

}
boolean help(int[] arr, int k, int lo, int hi) {
int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid] == k) return true;
if(arr[mid] < k) return help(arr, k, mid+1, hi);
else return help(arr, k, lo, mid);

}

2 3 5 16 37 50 73 75 126

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Example Recursive Code: Binary Search

21

Base case:

Recursive case:

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
return help(arr,k,0,arr.length);

}
boolean help(int[] arr, int k, int lo, int hi) {
int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid] == k) return true;
if(arr[mid] < k) return help(arr, k, mid+1, hi);
else return help(arr, k, lo, mid);

}

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Technique #1: Expansion

1. Determine the recurrence relation and base case

2. “Expand” the original relation to find the general-form
expression in terms of the number of expansions

3. Find the closed-form expression by setting the number of
expansions to a value which reduces to a base case

22

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Lecture Outline

v Algorithm Analysis III
§ Closing thoughts on Big Oh
§ Analyzing Recursive Code
• Linear Search example
• Binary Search example
• Binary Linear Sum example

23

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Summing an Array, Again (1 of 5)

Two “obviously” linear algorithms:

24

int sum(int[] arr) {
int ans = 0;
for (int i=0; i < arr.length; ++i)
ans += arr[i];

return ans;
}

int sum(int[] arr) {
return help(arr,0);

}
int help(int[]arr,int i) {
if (i == arr.length)
return 0;

return arr[i] + help(arr, i+1);
}

Recursive:

Iterative:

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Summing an Array, Again (2 of 5)

v What about a binary version of sum?
§ Can we get a BinarySearch-like runtime?

25

int sum(int[] arr) {
return help(arr, 0, arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr, lo, mid) + help(arr, mid, hi);

}

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Summing an Array, Again (3 of 5)

26

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Technique #2: Tree Method

v Idea: We’ll do the same reasoning, but give ourselves a visual
to make the organization easier

v We’ll make a tree
§ Each node of the tree represents one recursive call
§ The children of that node are the new recursive calls made

27

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Summing an Array, Again (4 of 5)

28

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Summing an Array, Again (5 of 5)

v Runtime is:

v Observation: it adds each number once while doing little else
§ Can’t do better than O(n); have to read whole array!

29

int sum(int[] arr) {
return help(arr, 0, arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr, lo, mid) + help(arr, mid, hi);

}

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

int sum(int[] arr) {
return help(arr, 0, arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr, lo, mid) + help(arr, mid, hi);

}

Parallelism Teaser

v But suppose we could do two recursive calls at the same time

• If you have as much parallelism as needed, the recurrence
becomes

• T(n) = O(1) + 1 T(n/2)

30

CSE332, Spring 2021L05: Algorithm Analysis III: Recurrences

Really Common Recurrences

31

Recurrence
Relation

Closed
Form Name Example

T(n) = O(1) + T(n/2) O(log n) Logarithmic Binary Search

T(n) = O(1) + T(n-1) O(n) Linear Sum
(v1: “Recursive Sum”)

T(n) = O(1) + 2T(n/2) O(n) Linear
Sum

(v2: “Recursive Binary
Sum”)

T(n) = O(n) + T(n/2) O(n) Linear

T(n) = O(n) + 2T(n/2) O(n log n) Loglinear MergeSort

T(n) = O(n) + T(n-1) O(n2) Quadratic

T(n) = O(1) + 2T(n-1) O(2n) Exponential Fibonacci

