Algorithm Analysis I (cont); Algorithm Analysis II: Amortization CSE 332 Spring 2021

Instructor:
Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Hamsa Shankar Nachiket Karmarkar

Richard Jiang
Winston Jodjana

*ll gradescope

* Consider $f(n)=n^{3}$ and $g(n)=4 n^{2}+3 n+4$. Is $g(n)$ in $O(f(n))$?
* Bonus question: choose a c and n_{0} to support your answer. You do not need to submit a proof, just two values.

Announcements

* Substitute lecturer for Wednesday; TBD for Friday
- Canceling my Tuesday afternoon OH
* Delayed upload of Friday (L3) materials; Gradescope duedate for "participation" given an extra 24h
- Ie, due Tuesday at 12:20
* Project 1's Checkpoint is a Gradescope survey that released on Thursday
- Stays open for 2d

Lecture Outline

* Algorithm Analysis I: Asymptotics Wrapup
- Review: Big-O, Formally
- Big-Omega and Big-Theta
* Algorithm Analysis II: Amortization
- Amortized Bounds
- Where We’ve Come / Where We're Going

Computational Model for a Single Algorithm

* Running benchmarks is noisy and not predictive
* In our model, we abstract away the computer by counting:

1. Constant-space elements (space complexity)
2. Constant-time operations (time complexity)

* We can analyze multiple cases, but typically focus on worst
- So we typically analyze the slower branch

Asymptotic Analysis to Compare Algorithms

* Even with a simplified model to derive expressions, we still don't know how to compare functions
- What's faster: $8 \mathrm{n}+2$ or $0.2 \mathrm{n}^{2}$?
- Depends on specific case, constant factors, and size of n !
* We pick $n \rightarrow \infty$ to establish a shared point of reference
- As $\mathrm{n} \rightarrow \infty$, constant factors don't contribute meaningfully to runtime
- Intuitively, we begin to compare curve shapes
* Asymptotic analysis compares functions
- Eg Big-O, but also big- Ω et al.

Big-Oh Relates Functions

* We use O on a function $f(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$
* So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
- $3 n^{2}+17$ and n^{2} have the same asymptotic behavior
* Formally,

Definition: $g(n)$ is in $O(f(n))$ iff there exist
positive constants c and n_{0} such that
$g(n) \leq c f(n) \quad$ for all $n \geq n_{0}$
$n_{0} \geq 1$ and a natural number; $c>0$

*ll gradescope

* True or false?
- $4+3 n$ is $O(n)$
- $n+2 \log n$ is $O(\log n)$
- $\log n+2$ is $O(1)$
- n^{50} is $\mathrm{O}\left(1.1^{\mathrm{n}}\right)$
* Notes:
- Do NOT ignore constants that are not multipliers:
- n^{3} is $\mathrm{O}\left(\mathrm{n}^{2}\right)$: FALSE
- 3^{n} is $\mathrm{O}\left(2^{n}\right)$: FALSE
- When in doubt, refer to the definition

Big-Oh, Formally

Definition: $g(n)$ is in $O(f(n))$ eff there exist
positive constants c and n_{0} such that
$g(n) \leq c f(n) \quad$ for all $n \geq n_{0}$
$n_{0} \geq 1$

$n_{0} \geq 1$ and a natural number; $c>0$

* To show $g(n)$ is in $O(f(n))$, pick
- a c large enough to "cover the constant factors"
- an n_{0} large enough to "cover the lower-order terms"
*. Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=n$
- https://www.desmos.com/calculator/zmsgznyrnu
* Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=n^{5}$
- https://www.desmos.com/calculator/b5tg7wy6dk
*. Example: Let $\mathrm{g}(\mathrm{n})=3 n+4$ and $\mathrm{f}(n)=2^{n}$
- https://www.desmos.com/calculator/nOnzmjxanh

What's with the c?

* To capture this notion of "similar asymptotic behavior", we allow a constant multiplier called c. Consider:

$$
\begin{aligned}
& g(n)=3 n+4 \\
& f(n)=n
\end{aligned}
$$

* These have the same asymptotic behavior (linear), even though $\mathrm{g}(\mathrm{n})$ is always larger
- ie, there is no positive n_{0} such that $g(n) \leq f(n)$ for all $n \geq n_{0}$
* The 'c' allows us to show their asymptotic relationship:

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

* To show $g(n)$ is in $O(f(n))$, let $c=12, n_{0}=1$
- https://www.desmos.com/calculator/zmsgznyrnu

Example: Using the Definition of Big-Oh

To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lowerorder terms"
*. Example: Let $g(n)=4 n^{2}+3 n+4$ and $f(n)=n^{3}$

$$
\begin{aligned}
& \text { Choose ch: } \\
& \qquad \begin{aligned}
& g(n)= 4 n^{2}+3 n+4 \leq 4 n^{3}=c f(n) \\
& \text { Choose } n_{0}=3 \quad \\
& 4.9+3.3+4 \leq 4.27 \\
& 49 \leq 108 \\
& \therefore g(n) \leq 4 f(n) \quad \forall n \geq 3
\end{aligned}
\end{aligned}
$$

*lı gradescope

* For $\mathrm{g}(\mathrm{n})=4 \mathrm{n}$ and $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$, show $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n})$)
- A valid proof is to find valid c \& n_{0}
- When $n=4, g(n)=16 \& f(n)=16$; this is the crossing over point
- So we can choose $n_{0}=4$, and $c=1$
- Note: There are many possible choices: ex: $n_{0}=78$, and $c=42$ works fine
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ iff there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0} .
$$

Example 3: Using the Definition of Big-Oh

* For $g(n)=n^{4}$ and $f(n)=2^{n}$, show $g(n)$ is in $O(f(n)$)
- A valid proof is to find valid c \& n_{0}
- One possible answer: $\mathrm{n}_{0}=20$, and $\mathrm{c}=1$
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ iff there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0} .
$$

Reviewing the Big-O Rules

* Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything because our computational model assumes "constant" operations
* Eliminate low-order terms because they have vanishingly small impact as n grows
* Do NOT ignore constants that are not multipliers
- n^{3} is not $O\left(n^{2}\right)$
- 3^{n} is not $O\left(2^{n}\right)$
(These all follow from the formal definition)

Common Complexity Classes

$\mathrm{O}(1) *(O(k)$ for any $k)$	Constant
$\mathrm{O}(\log \log \mathrm{n})$	
$\mathrm{O}(\log \mathrm{n})$	Logarithmic
$\mathrm{O}\left(\log ^{k} \mathrm{n}\right) *($ for any $k>1)$	
$\mathrm{O}(\mathrm{n})$	Linear
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	Loglinear
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Quadratic
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	Cubic
$\mathrm{O}\left(\mathrm{n}^{k}\right){ }^{*}($ for any $k>1)$	Polynomial
$\mathrm{O}\left(\mathrm{k}^{\mathrm{n}}\right) *($ for any $k>1)$	Exponential

Note: "exponential" does not mean "grows really fast"; it means "grows at rate proportional to k^{n} for some $k>1^{\prime \prime}$

Lecture Outline

* Algorithm Analysis: Asymptotics Wrapup
- Review: Big-O, Formally
- Big-Omega and Big-Theta
* Algorithm Analysis II: Amortization
- Amortized Bounds
- Where We’ve Come / Where We're Going

Big-O: Intuition

* Big-O can be thought of as something like "less-than or equals"

Function	Big-O	Also Big-O
$N^{3}+3 N^{4}$	$\mathrm{O}\left(\mathrm{N}^{4}\right)$	$\mathrm{O}\left(\mathrm{N}^{5}\right)$
$(1 / \mathrm{N})+\mathrm{N}^{3}$	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	$\mathrm{O}\left(\mathrm{N}^{423421531542}\right)$
$\mathrm{Ne}^{\mathrm{N}}+\mathrm{N}$	$\mathrm{O}\left(\mathrm{Ne}^{\mathrm{N}}\right)$	$\mathrm{O}\left(\mathrm{N}^{*} 3^{N}\right)$
$40 \sin (\mathrm{~N})+4 \mathrm{~N}^{2}$	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	$\mathrm{O}\left(\mathrm{N}^{2.1}\right)$

$$
\begin{aligned}
& g(n) \text { is in } O(f(n)) \text { iff there exist } \\
& \text { positive constants } c \text { and } n_{0} \text { such that } \\
& \qquad g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
\end{aligned}
$$

Big-Omega: Intuition

* Big-Omega can be thought of as something like "greater-than or equals"

Function	Big-O	Big-Omega	Also Big-Omega
$\mathrm{N}^{3}+3 \mathrm{~N}^{4}$	$\mathrm{O}\left(\mathrm{N}^{4}\right)$	$\Omega\left(\mathrm{N}^{4}\right)$	$\Omega\left(\mathrm{N}^{2}\right)$
$(1 / \mathrm{N})+\mathrm{N}^{3}$	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	$\Omega\left(\mathrm{N}^{3}\right)$	$\Omega(1)$
$\mathrm{Ne}^{N}+N$	$\mathrm{O}\left(\mathrm{Ne}^{\mathrm{N}}\right)$	$\Omega\left(\mathrm{Ne}^{N}\right)$	$\Omega(\mathrm{N})$
$40 \sin (\mathrm{~N})+4 \mathrm{~N}^{2}$	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	$\Omega\left(\mathrm{N}^{2}\right)$	$\Omega(\mathrm{N})$

$$
\begin{aligned}
& g(n) \text { is in } \Omega(f(n)) \text { iff there exist } \\
& \text { positive constants } c \text { and } n_{0} \text { such that } \\
& \qquad g(n) \geq c f(n) \quad \text { for all } n \geq n_{0}
\end{aligned}
$$

Big-Theta: Intuition

* Big-Theta more closely resembles "equals"

Function	Big-O	Big-Omega	Big-Theta
$N^{3}+3 N^{4}$	$O\left(N^{4}\right)$	$\Omega\left(N^{4}\right)$	$\Theta\left(N^{4}\right)$
$(1 / N)+N^{3}$	$O\left(N^{3}\right)$	$\Omega\left(N^{3}\right)$	$\Theta\left(N^{3}\right)$
$\mathrm{Ne}^{N}+N$	$O\left(\mathrm{Ne}^{N}\right)$	$\Omega\left(\mathrm{Ne}^{N}\right)$	$\Theta\left(\mathrm{Ne}^{\mathrm{N}}\right)$
$40 \sin (N)+4 \mathrm{~N}^{2}$	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	$\Omega\left(\mathrm{N}^{2}\right)$	$\Theta\left(N^{2}\right)$

$$
\begin{aligned}
& g(n) \text { is in } \Theta(f(n)) \text { iff there exist } \\
& \text { positive constants } c \text { and } n_{0} \text { such that } \\
& c_{1} f(n) \leq g(n) \leq c_{2} f(n) \quad \text { for all } n \geq n_{0}
\end{aligned}
$$

Big-O, Big-Theta, Big-Omega Relationship

* If a function f is in Big-Theta, what does it mean for its membership in Big-O and Big-Omega? Vice versa?

Function	Big-O	Big-Theta	Big-Omega
$N^{3}+3 N^{4}$	$O\left(N^{4}\right)$	$\Theta\left(N^{4}\right)$	$\Omega\left(N^{4}\right)$
$(1 / N)+N^{3}$		$\Theta\left(N^{3}\right)$	
$N^{N}+N$		$\Theta\left(N^{N}\right)$	
$40 \sin (N)+4 N^{2}$		$\Theta\left(N^{2}\right)$	

In Other Words

* Upper bound: $O(f(\mathrm{n}))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(\mathrm{n})$
- $g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that

$$
\mathrm{g}(n) \leq c f(\mathrm{n}) \text { for all } n \geq n_{0}
$$

* Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(\mathrm{n})$
- $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_{0} such that

$$
\mathrm{g}(n) \geq c f(\mathrm{n}) \text { for all } n \geq n_{0}
$$

*. Tight bound: $\theta(\mathrm{f}(\mathrm{n}))$ is the set of all functions asymptotically equal to $f(n)$

- Intersection of $O(\mathrm{f}(\mathrm{n})$) and $\Omega(\mathrm{f}(\mathrm{n})$) (can use different c values)

A Warning about Terminology

* A common error is to say $O(f(n))$ when you mean $\theta(f(n))$
- People often say O() to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
- Since $f(n)=n$ is also $O\left(n^{5}\right)$, it's tempting to say "this algorithm is exactly $O(n)$ "
- It's better to say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$
* Less common notation:
- "little-oh": like "big-Oh" but strictly less than
- Example: $f(n)$ is $o\left(n^{2}\right)$ but not $o(n)$
- "little-omega": like "big-Omega" but strictly greater than
- Example: $\mathrm{f}(\mathrm{n})$ is $\omega(\log n)$ but not $\omega(n)$

What We are Analyzing

* The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
* Reminder that Case Analysis != Asymptotic Analysis
- Cases describe a specific path through your algorithm
- Big-O/Big-Omega/Big-Theta bounds describe curve shapes for large values
* When comparing two algorithms, you must pick all of these:
- A case (eg, best, worst, amortized, etc)
- A metric (eg, time, space)
- A bound type (eg, big-O, big-Theta, little-omega, etc)

What We are Analyzing: Examples

* True statements about binary-search algorithm:
- Common: $\theta(\log n)$ running-time in the worst-case
- Less common: $\theta(1)$ in the best-case
- item is in the middle
- Less common: $\Omega(\log \log n)$ in the worst-case
- it is not really, really, really fast asymptotically
- Less common (but very good to know): the find-in-sorted-array problem is $\Omega(\log n)$ in the worst-case
- No algorithm can do better (without parallelism)
- A problem cannot be $O(f(n))$ since you can always find a slower algorithm, but can mean there exists an algorithm

Lecture Outline

* Algorithm Analysis I: Asymptotics Wrapup
- Review: Big-O, Formally
- Big-Omega and Big-Theta
* Algorithm Analysis II: Amortization
- Amortized Bounds
- Where We've Come / Where We're Going

Linear Search: Best vs Worst Case

* Find an integer in a sorted array

Complexity Cases

* We started with two cases:
- Worst-case complexity: maximum number of steps algorithm takes on "most challenging" input of size N
- Best-case complexity: minimum number of steps algorithm takes on "easiest" input of size N
* We punted on one case: Average-case complexity
- Sometimes: relies on distribution of inputs
- Eg, binary heap's O(1) insert
- See CSE312 and STAT391
- Sometimes: uses randomization in the algorithm
- Will see an example with sorting; also see CSE312
* We've mentioned, but not defined, one category of cases:
- Amortized-case complexity

Amortized Analyses $\boldsymbol{=}$ Multiple Executions

Single Execution	Multiple Executions
Worst Case	Amortized Worst Case
Best Case	Amortized Best Case
Average Case	Amortized Average Case

Amortized Analysis: ArrayList.add()

* Consider adding an element to an array-backed structure
- Eg, Java's ArrayList

ArrayList.size()
ArrayList's capacity

X	X	\ldots	X	-	-	\ldots	-

* When the underlying array fills, we allocate and copy contents

ArrayList.add() Runtime (1 of 2)

* We know that copying a single element and allocating arrays are both constant-time operations
- Let's call their runtimes ' c ' and ' d ', respectively

Most of the time

Runtime:
C

ArrayList.add() Runtime (2 of 2)

Single
 Execution

Multiple Executions

Worst Case:
Aggregate Worst: $\mathbf{O}(\mathbf{N}) \quad$ Amortized Worst: ??
Best Case: ©(1) Aggregate Best: ©(1) Amortized Best: ??

* Some applications cannot tolerate the "occasional O(n) behavior"
* Other applications can tolerate "occasional O(n) behavior" if we can show that it's "not too bad" / "not too common"

ArrayList.add(): Best-Case Aggregate Runtime

add (X)

add (X)

add (X)

x	x	x	x

Best-case Aggregate Runtime:

*ll gradescope

add (X)

add (X)

add (X)

x	x	x	x

Worst-case Aggregate Runtime:

Amortized Analysis Intuition

* See Weiss, ch 11, for formal methods
* But the intuition is: if our client is willing to tolerate it, we will "smooth" the aggregate cost of n operations over n itself

Single Execution

Multiple Executions

Worst Case: O(N)

Aggregate Worst: $\mathbf{O}(\mathrm{N}) \quad$ Amortized Worst: $\mathbf{O}(1)$

Best Case: $\boldsymbol{\Theta}(1)$ Aggregate Best: $\boldsymbol{\Theta}(1) \quad$ Amortized Best: $\boldsymbol{\Theta}(1)$

* Note: we increased our array size by a factor of n (eg, 2n, 3n, etc). What if we increased it by a constant factor (eg, 1, 100, 1000) instead?

Summary

* Asymptotic analysis gives us a common "frame of reference" with which to compare algorithms
- Most common comparisons are Big-O, Big-Omega, and Big-Theta
- But also little-o and little-omega
* Case Analysis != Asymptotic Analysis
* We combine asymptotic analysis and case analysis to compare the behavior of data structures and algorithms

