Algorithm Analysis I (cont); Algorithm Analysis II: Amortization CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar

Patrick Murphy Richard Jiang Winston Jodjana

ill gradescope

gradescope.com/courses/256241

- * Consider $f(n) = n^3$ and $g(n) = 4n^2 + 3n + 4$. Is g(n) in O(f(n))?
- $\, \ast \,$ Bonus question: choose a c and n_0 to support your answer. You do not need to submit a proof, just two values.

Announcements

- Substitute lecturer for Wednesday; TBD for Friday
 - Canceling my Tuesday afternoon OH
- Delayed upload of Friday (L3) materials; Gradescope duedate for "participation" given an extra 24h
 - Ie, due Tuesday at 12:20
- Project 1's Checkpoint is a Gradescope survey that released on Thursday
 - Stays open for 2d

Lecture Outline

- Algorithm Analysis I: Asymptotics Wrapup
 - Review: Big-O, Formally
 - Big-Omega and Big-Theta
- Algorithm Analysis II: Amortization
 - Amortized Bounds
 - Where We've Come / Where We're Going

Computational Model for a Single Algorithm

- Running benchmarks is noisy and not predictive
- In our model, we abstract away the computer by counting:
 - 1. Constant-space elements (space complexity)
 - 2. Constant-time operations (time complexity)
- We can analyze multiple cases, but typically focus on worst
 - So we typically analyze the slower branch

Asymptotic Analysis to Compare Algorithms

- Even with a simplified model to derive expressions, we still don't know how to compare functions
 - What's faster: 8n + 2 or 0.2n²?
 - Depends on specific case, constant factors, and size of n !
- ↔ We pick n $\rightarrow \infty$ to establish a shared point of reference
 - As $n \rightarrow \infty$, constant factors don't contribute meaningfully to runtime
 - Intuitively, we begin to compare curve shapes
- Asymptotic analysis compares functions
 - Eg Big-O, but also big-Ω et al.

Big-Oh Relates Functions

- We use O on a function f(n) (for example n²) to mean the set of functions with asymptotic behavior less than or equal to f(n)
- ✤ So (3n²+17) is in O(n²)
 - 3n²+17 and n² have the same asymptotic behavior
- Formally,

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

 $n_0 \ge 1$ and a natural number; c > 0

Ill gradescope

gradescope.com/courses/256241

- True or false?
 - 4+3n is O(n)
 - n+2log n is O(log n)
 - log n+2 is O(1)
 - n⁵⁰ is O(1.1ⁿ)
- Notes:
 - Do NOT ignore constants that are not multipliers:
 - n³ is O(n²) : FALSE
 - 3ⁿ is O(2ⁿ) : FALSE
 - When in doubt, refer to the definition

Big-Oh, Formally

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that

 $g(n) \leq c f(n)$

for all $n \ge n_0$

 $n_0 \ge 1$ and a natural number; c > 0

- To show g(n) is in O(f(n)), pick
 - a c large enough to "cover the constant factors"
 - an n₀ large enough to "cover the lower-order terms"
- * Example: Let g(n) = 3n + 4 and f(n) = n
 - https://www.desmos.com/calculator/zmsgznyrnu
- * Example: Let g(n) = 3n + 4 and $f(n) = n^5$
 - https://www.desmos.com/calculator/b5tg7wy6dk
- Example: Let g(n) = 3n + 4 and $f(n) = 2^n$
 - https://www.desmos.com/calculator/n0nzmjxanh

What's with the c?

 To capture this notion of "similar asymptotic behavior", we allow a constant multiplier called c. Consider:

g(n) = 3n+4 **f(n)** = n

- These have the same asymptotic behavior (linear), even though g(n) is always larger
 - ie, there is <u>no</u> positive n_0 such that $g(n) \le f(n)$ for all $n \ge n_0$
- The 'c' allows us to show their asymptotic relationship:
 g(n) ≤ c f(n) for all $n ≥ n_0$
- * To show g(n) is in O(f(n)), let c = 12, $n_0 = 1$
 - https://www.desmos.com/calculator/zmsgznyrnu

Example: Using the Definition of Big-Oh

- To show g(n) is in O(f(n)), pick a *c* large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"
- * Example: Let $g(n) = 4n^2 + 3n + 4$ and $f(n) = n^3$ Choose C=4: $g(n) = 4n^{2} + 3n + 4 \le 4n^{3} = cf(n)$ Choose $n_{0} = 3$ $4 \cdot 9 + 3 \cdot 3 + 4 \le 4 \cdot 27$ $\begin{array}{c} 49 \leq 108\\ \vdots g(n) \leq 4f(n) \ \forall \ n \geq 3 \end{array}$

Ill gradescope

gradescope.com/courses/256241

- For g(n) = 4n and f(n) = n², show g(n) is in O(f(n))
 - A valid proof is to find valid c & n₀
 - When n=4, g(n) =16 & f(n) =16; this is the crossing over point
 - So we can choose n₀ = 4, and c = 1
 - Note: There are many possible choices:
 ex: n₀ = 78, and c = 42 works fine

g(n) is in O(f(n)) iff there exist *positive* constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$.

Example 3: Using the Definition of Big-Oh

- * For $g(n) = n^4$ and $f(n) = 2^n$, show g(n) is in O(f(n))
 - A valid proof is to find valid c & n₀
 - One possible answer: n₀ = 20, and c = 1

g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that g(n) $\leq c f(n)$ for all $n \geq n_0$.

Reviewing the Big-O Rules

- Eliminate coefficients because we don't have units anyway
 - 3n² versus 5n² doesn't mean anything because our computational model assumes "constant" operations
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
 - *n*³ is not *O*(*n*²)
 - 3ⁿ is not O(2ⁿ)

(These all follow from the formal definition)

Common Complexity Classes

O(1) *(O(k) for any k)	Constant
O(log log n)	
O(log n)	Logarithmic
O(log ^k n) *(for any k>1)	
O(n)	Linear
O(n log n)	Loglinear
O(n²)	Quadratic
O(n ³)	Cubic
O(n ^k) *(for any k>1)	Polynomial
O(k ⁿ) *(for any k>1)	Exponential

Note: "exponential" does not mean "grows really fast"; it means "grows at rate proportional to k^n for some k>1"

Lecture Outline

- Algorithm Analysis: Asymptotics Wrapup
 - Review: Big-O, Formally
 - Big-Omega and Big-Theta
- Algorithm Analysis II: Amortization
 - Amortized Bounds
 - Where We've Come / Where We're Going

Big-O: Intuition

Big-O can be thought of as something like "less-than or equals"

Function	Big-O	Also Big-O
N ³ + 3N ⁴	O(N ⁴)	O(N ⁵)
(1 / N) + N ³	O(N ³)	O(N ⁴²³⁴²¹⁵³¹⁵⁴²)
Ne ^N + N	O(Ne ^ℕ)	O(N*3 ^N)
40 sin(N) + 4N ²	O(N ²)	O(N ^{2.1})

g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

Big-Omega: Intuition

 Big-Omega can be thought of as something like "greater-than or equals"

Function	Big-O	Big-Omega	Also Big-Omega
N ³ + 3N ⁴	O(N ⁴)	Ω(N ⁴)	Ω(N²)
(1 / N) + N ³	O(N ³)	Ω(N ³)	Ω(1)
Ne ^N + N	O(Ne ^N)	Ω(Ne ^N)	Ω(N)
40 sin(N) + 4N ²	O(N ²)	Ω(N²)	Ω(N)

g(n) is in $\Omega(f(n))$ iff there exist positive constants *c* and n_0 such that

 $g(n) \ge c f(n)$ for all $n \ge n_0$

Big-Theta: Intuition

Big-Theta more closely resembles "equals"

Function	Big-O	Big-Omega	Big-Theta
N ³ + 3N ⁴	O(N ⁴)	Ω(N ⁴)	Θ(N ⁴)
(1 / N) + N ³	O(N ³)	Ω(N³)	Θ(N³)
Ne ^N + N	O(Ne ^ℕ)	Ω(Ne ^N)	Θ(Ne ^N)
40 sin(N) + 4N ²	O(N ²)	Ω(N²)	Θ(N²)

g(n) is in $\Theta(f(n))$ iff there exist positive constants c and n_0 such that

 $c_1 \mathbf{f}(n) \le \mathbf{g}(n) \le c_2 \mathbf{f}(n)$ for all $n \ge n_0$

Big-O, Big-Theta, Big-Omega Relationship

If a function f is in Big-Theta, what does it mean for its membership in Big-O and Big-Omega? Vice versa?

Function	Big-O	Big-Theta	Big-Omega
N ³ + 3N ⁴	O(N ⁴)	Θ(N ⁴)	Ω(N ⁴)
(1 / N) + N ³		Θ(N ³)	
Ne ^N + N		Θ(Ne ^N)	
40 sin(N) + 4N ²		Θ(N²)	

In Other Words ...

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$

- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and Ω(f(n)) (can use different c values)

A Warning about Terminology

- * A common error is to say O(f(n)) when you mean $\theta(f(n))$
 - People often say O() to mean a tight bound
 - Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
 - Since f(n)=n is also $O(n^5)$, it's tempting to say "this algorithm is exactly O(n)"
 - It's better to say it is θ(n)
 - That means that it is not, for example O(log n)
- Less common notation:
 - "little-oh": like "big-Oh" but strictly less than
 - Example: f(n) is $o(n^2)$ but not o(n)
 - "little-omega": like "big-Omega" but strictly greater than
 - Example: f(n) is $\omega(\log n)$ but not $\omega(n)$

What We are Analyzing

- * The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Reminder that Case Analysis != Asymptotic Analysis
 - Cases describe a specific path through your algorithm
 - Big-O/Big-Omega/Big-Theta bounds describe curve shapes for large values
- When comparing two algorithms, you must pick all of these:
 - A case (eg, best, worst, amortized, etc)
 - A metric (eg, time, space)
 - A bound type (eg, big-O, big-Theta, little-omega, etc)

What We are Analyzing: Examples

- True statements about binary-search algorithm:
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case
 - item is in the middle
 - Less common: Ω(log log n) in the worst-case
 - it is not really, really, really fast asymptotically
 - Less common (but very good to know): the find-in-sorted-array problem is Ω(log n) in the worst-case
 - No algorithm can do better (without parallelism)
 - A *problem* cannot be O(f(n)) since you can always find a slower algorithm, but can mean *there exists* an algorithm

Lecture Outline

- Algorithm Analysis I: Asymptotics Wrapup
 - Review: Big-O, Formally
 - Big-Omega and Big-Theta
- Algorithm Analysis II: Amortization
 - Amortized Bounds
 - Where We've Come / Where We're Going

Linear Search: Best vs Worst Case

Find an integer in a sorted array

	2	3	5	16	37	50	73	75	126
--	---	---	---	----	----	----	----	----	-----

Complexity Cases

- We started with two cases:
 - Worst-case complexity: maximum number of steps algorithm takes on "most challenging" input of size N
 - Best-case complexity: minimum number of steps algorithm takes on "easiest" input of size N
- We punted on one case: Average-case complexity
 - Sometimes: relies on distribution of inputs
 - Eg, binary heap's O(1) insert
 - See CSE312 and STAT391
 - Sometimes: uses randomization in the algorithm
 - Will see an example with sorting; also see CSE312
- We've mentioned, but not defined, one *category* of cases:
 - Amortized-case complexity

Amortized Analyses = Multiple Executions

Single Execution	Multiple Executions
Worst Case	Amortized Worst Case
Best Case	Amortized Best Case
Average Case	Amortized Average Case

Amortized Analysis: ArrayList.add()

Consider adding an element to an array-backed structure

When the underlying array fills, we allocate and copy contents

ArrayList.add() Runtime (1 of 2)

- We know that copying a single element and allocating arrays are both constant-time operations
 - Let's call their runtimes 'c' and 'd', respectively

ArrayList.add() Runtime (2 of 2)

Single Execution	Multiple Executions		
Worst Case: $\Theta(N)$	Aggregate Worst: O(N)	Amortized Worst: ??	
Best Case: O(1)	Aggregate Best: O(1)	Amortized Best: ??	

- Some applications cannot tolerate the "occasional O(n) behavior"
- Other applications can tolerate "occasional O(n) behavior" if we can show that it's "not too bad" / "not too common"

ArrayList.add(): Best-Case Aggregate Runtime

Best-case Aggregate Runtime:

ill gradescope

gradescope.com/courses/256241

Х

Amortized Analysis Intuition

- See Weiss, ch 11, for formal methods
- But the intuition is: if our client is willing to tolerate it, we will "smooth" the aggregate cost of n operations over n itself

Single Execution	Multiple Executions			
Worst Case: $\Theta(N)$	Aggregate Worst: O(N)	Amortized Worst: O(1)		
Best Case: O(1)	Aggregate Best: O(1)	Amortized Best: O(1)		
Note: we increased our array size by a factor of n (eg, 2n, 3n, etc). What if we increased it by a constant factor (eg, 1, 100, 1000) instead?				

Summary

- Asymptotic analysis gives us a common "frame of reference" with which to compare algorithms
 - Most common comparisons are Big-O, Big-Omega, and Big-Theta
 - But also little-o and little-omega
- Case Analysis != Asymptotic Analysis
- We combine asymptotic analysis and case analysis to compare the behavior of data structures and algorithms