
CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Algorithm Analysis I (cont);
Algorithm Analysis II: Amortization
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L04: Algorithm Analysis I; Algorithm Analysis II

2

❖ Consider f(n) = n3 and g(n) = 4n2 + 3n + 4. Is g(n) in O(f(n))?

❖ Bonus question: choose a c and n0to support your answer. You do not
need to submit a proof, just two values.

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Announcements

❖ Substitute lecturer for Wednesday; TBD for Friday

▪ Canceling my Tuesday afternoon OH

❖ Delayed upload of Friday (L3) materials; Gradescope duedate
for “participation” given an extra 24h

▪ Ie, due Tuesday at 12:20

❖ Project 1’s Checkpoint is a Gradescope survey that released on
Thursday

▪ Stays open for 2d

3

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Lecture Outline

❖ Algorithm Analysis I: Asymptotics Wrapup

▪ Review: Big-O, Formally

▪ Big-Omega and Big-Theta

❖ Algorithm Analysis II: Amortization

▪ Amortized Bounds

▪ Where We’ve Come / Where We’re Going

4

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Computational Model for a Single Algorithm

❖ Running benchmarks is noisy and not predictive

❖ In our model, we abstract away the computer by counting:

1. Constant-space elements (space complexity)

2. Constant-time operations (time complexity)

❖ We can analyze multiple cases, but typically focus on worst

▪ So we typically analyze the slower branch

5

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Asymptotic Analysis to Compare Algorithms

❖ Even with a simplified model to derive expressions, we still
don’t know how to compare functions

▪ What’s faster: 8n + 2 or 0.2n2 ?

▪ Depends on specific case, constant factors, and size of n !

❖ We pick n→∞ to establish a shared point of reference

▪ As n→∞ , constant factors don’t contribute meaningfully to runtime

▪ Intuitively, we begin to compare curve shapes

❖ Asymptotic analysis compares functions

▪ Eg Big-O, but also big-Ω et al.

6

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Big-Oh Relates Functions

❖ We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

❖ So (3n2+17) is in O(n2)

▪ 3n2+17 and n2 have the same asymptotic behavior

❖ Formally,

7

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

n0  1 and a natural number; c > 0

CSE332, Spring 2021

gradescope.com/courses/256241

L04: Algorithm Analysis I; Algorithm Analysis II

8

❖ True or false?

▪ 4+3n is O(n)

▪ n+2log n is O(log n)

▪ log n+2 is O(1)

▪ n50 is O(1.1n)

❖ Notes:

▪ Do NOT ignore constants that are not multipliers:

• n3 is O(n2) : FALSE

• 3n is O(2n) : FALSE

▪ When in doubt, refer to the definition

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Big-Oh, Formally

❖ To show g(n) is in O(f(n)), pick

▪ a c large enough to “cover the constant factors”

▪ an n0 large enough to “cover the lower-order terms”

❖ Example: Let g(n) = 3n + 4 and f(n) = n
▪ https://www.desmos.com/calculator/zmsgznyrnu

❖ Example: Let g(n) = 3n + 4 and f(n) = n5

▪ https://www.desmos.com/calculator/b5tg7wy6dk

❖ Example: Let g(n) = 3n + 4 and f(n) = 2n

▪ https://www.desmos.com/calculator/n0nzmjxanh
9

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

n0  1 and a natural number; c > 0

https://www.desmos.com/calculator/zmsgznyrnu
https://www.desmos.com/calculator/b5tg7wy6dk
https://www.desmos.com/calculator/n0nzmjxanh

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

What’s with the c?

❖ To capture this notion of “similar asymptotic behavior”, we
allow a constant multiplier called c. Consider:

g(n) = 3n+4

f(n) = n

❖ These have the same asymptotic behavior (linear), even
though g(n) is always larger

▪ ie, there is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

❖ The ‘c’ allows us to show their asymptotic relationship:
g(n)  c f(n) for all n  n0

❖ To show g(n) is in O(f(n)), let c = 12, n0 = 1

▪ https://www.desmos.com/calculator/zmsgznyrnu
10

https://www.desmos.com/calculator/zmsgznyrnu

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Example: Using the Definition of Big-Oh

To show g(n) is in O(f(n)), pick a c large enough to “cover the
constant factors” and n0 large enough to “cover the lower-
order terms”

❖ Example: Let g(n) = 4n2 + 3n + 4 and f(n) = n3

12

CSE332, Spring 2021

gradescope.com/courses/256241

L04: Algorithm Analysis I; Algorithm Analysis II

13

❖ For g(n) = 4n and f(n) = n2, show g(n) is in O(f(n))

▪ A valid proof is to find valid c & n0

▪ When n=4, g(n) =16 & f(n) =16; this is the crossing over point

▪ So we can choose n0 = 4, and c = 1

▪ Note: There are many possible choices:
ex: n0 = 78, and c = 42 works fine

g(n) is in O(f(n)) iff there exist positive
constants c and n0 such that

g(n)  c f(n) for all n  n0.

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Example 3: Using the Definition of Big-Oh

❖ For g(n) = n4 and f(n) = 2n, show g(n) is in O(f(n))

▪ A valid proof is to find valid c & n0

▪ One possible answer: n0 = 20, and c = 1

14

g(n) is in O(f(n)) iff there exist positive
constants c and n0 such that

g(n)  c f(n) for all n  n0.

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Reviewing the Big-O Rules

❖ Eliminate coefficients because we don’t have units anyway

▪ 3n2 versus 5n2 doesn’t mean anything because our computational
model assumes “constant” operations

❖ Eliminate low-order terms because they have vanishingly small
impact as n grows

❖ Do NOT ignore constants that are not multipliers

▪ n3 is not O(n2)

▪ 3n is not O(2n)

15

(These all follow from the formal definition)

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Common Complexity Classes

Note: “exponential” does not
mean “grows really fast”; it
means “grows at rate
proportional to kn for some
k>1”

16

O(1) *(O(k) for any k) Constant

O(log log n)

O(log n) Logarithmic

O(logk n) *(for any k>1)

O(n) Linear

O(n log n) Loglinear

O(n2) Quadratic

O(n3) Cubic

O(nk) *(for any k>1) Polynomial

O(kn) *(for any k>1) Exponential

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Lecture Outline

❖ Algorithm Analysis: Asymptotics Wrapup

▪ Review: Big-O, Formally

▪ Big-Omega and Big-Theta

❖ Algorithm Analysis II: Amortization

▪ Amortized Bounds

▪ Where We’ve Come / Where We’re Going

17

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Big-O: Intuition

❖ Big-O can be thought of as something like “less-than or equals”

18

Function Big-O

N3 + 3N4 O(N4)

(1 / N) + N3 O(N3)

NeN + N O(NeN)

40 sin(N) + 4N2 O(N2)

Also Big-O

O(N5)

O(N423421531542)

O(N*3N)

O(N2.1)

g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Big-Omega: Intuition

❖ Big-Omega can be thought of as something like “greater-than
or equals”

19

Function Big-O Big-Omega

N3 + 3N4 O(N4) Ω(N4)

(1 / N) + N3 O(N3) Ω(N3)

NeN + N O(NeN) Ω(NeN)

40 sin(N) + 4N2 O(N2) Ω(N2)

Also Big-Omega

Ω(N2)

Ω(1)

Ω(N)

Ω(N)

g(n) is in Ω(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Big-Theta: Intuition

❖ Big-Theta more closely resembles “equals”

20

Function Big-O Big-Omega Big-Theta

N3 + 3N4 O(N4) Ω(N4) Θ(N4)

(1 / N) + N3 O(N3) Ω(N3) Θ(N3)

NeN + N O(NeN) Ω(NeN) Θ(NeN)

40 sin(N) + 4N2 O(N2) Ω(N2) Θ(N2)

g(n) is in Θ(f(n)) iff there exist
positive constants c and n0 such that

c1 f(n)  g(n)  c2 f(n) for all n  n0

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Big-O, Big-Theta, Big-Omega Relationship

❖ If a function f is in Big-Theta, what does it mean for its
membership in Big-O and Big-Omega? Vice versa?

21

Function Big-O Big-Theta Big-Omega

N3 + 3N4 O(N4) Θ(N4) Ω(N4)

(1 / N) + N3 Θ(N3)

NeN + N Θ(NeN)

40 sin(N) + 4N2 Θ(N2)

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

In Other Words …

❖ Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)

▪ g(n) is in O(f(n)) if there exist constants c and n0 such that

g(n)  c f(n) for all n  n0

❖ Lower bound: (f(n)) is the set of all functions asymptotically
greater than or equal to f(n)

▪ g(n) is in (f(n)) if there exist constants c and n0 such that

g(n)  c f(n) for all n  n0

❖ Tight bound: (f(n)) is the set of all functions asymptotically
equal to f(n)

▪ Intersection of O(f(n)) and (f(n)) (can use different c values)
22

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

A Warning about Terminology

❖ A common error is to say O(f(n)) when you mean (f(n))

▪ People often say O() to mean a tight bound

• Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only
conveys the upper-bound

• Since f(n)=n is also O(n5), it’s tempting to say “this algorithm is exactly O(n)”

• It’s better to say it is (n)
– That means that it is not, for example O(log n)

❖ Less common notation:

▪ “little-oh”: like “big-Oh” but strictly less than

• Example: f(n) is o(n2) but not o(n)

▪ “little-omega”: like “big-Omega” but strictly greater than

• Example: f(n) is (log n) but not (n)

23

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

What We are Analyzing

❖ The most common thing to do is give an O or  bound to the
worst-case running time of an algorithm

❖ Reminder that Case Analysis != Asymptotic Analysis

▪ Cases describe a specific path through your algorithm

▪ Big-O/Big-Omega/Big-Theta bounds describe curve shapes for large
values

❖ When comparing two algorithms, you must pick all of these:

▪ A case (eg, best, worst, amortized, etc)

▪ A metric (eg, time, space)

▪ A bound type (eg, big-O, big-Theta, little-omega, etc)

24

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

What We are Analyzing: Examples

❖ True statements about binary-search algorithm:

▪ Common: (log n) running-time in the worst-case

▪ Less common: (1) in the best-case

• item is in the middle

▪ Less common: (log log n) in the worst-case

• it is not really, really, really fast asymptotically

▪ Less common (but very good to know): the find-in-sorted-array
problem is (log n) in the worst-case

• No algorithm can do better (without parallelism)

• A problem cannot be O(f(n)) since you can always find a slower algorithm,
but can mean there exists an algorithm

25

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Lecture Outline

❖ Algorithm Analysis I: Asymptotics Wrapup

▪ Review: Big-O, Formally

▪ Big-Omega and Big-Theta

❖ Algorithm Analysis II: Amortization

▪ Amortized Bounds

▪ Where We’ve Come / Where We’re Going

26

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

Linear Search: Best vs Worst Case

❖ Find an integer in a sorted array

27

Best k:

Worst k:

2 3 5 16 37 50 73 75 126

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Complexity Cases

❖ We started with two cases:

▪ Worst-case complexity: maximum number of steps algorithm takes
on “most challenging” input of size N

▪ Best-case complexity: minimum number of steps algorithm takes on
“easiest” input of size N

❖ We punted on one case: Average-case complexity

▪ Sometimes: relies on distribution of inputs

• Eg, binary heap’s O(1) insert

• See CSE312 and STAT391

▪ Sometimes: uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

❖ We’ve mentioned, but not defined, one category of cases:

▪ Amortized-case complexity
28

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Amortized Analyses = Multiple Executions

29

Single Execution Multiple Executions

Worst Case Amortized Worst Case

Best Case Amortized Best Case

Average Case Amortized Average Case

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Amortized Analysis: ArrayList.add()

❖ Consider adding an element to an array-backed structure

▪ Eg, Java’s ArrayList

❖ When the underlying array fills, we allocate and copy contents

30

X X … X - - … -

ArrayList.size() ArrayList’s capacity

X X X X

ArrayList.size()
ArrayList’s capacity

X X X X - - - -

ArrayList.size() ArrayList’s capacity

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

ArrayList.add() Runtime (1 of 2)

❖ We know that copying a single element and allocating arrays
are both constant-time operations

▪ Let’s call their runtimes ‘c’ and ‘d’, respectively

31

Most of the time Worst case

X X - -

X X X -

X X X X

- - - - - - - -

X X X X

X X X X - - - -

X X X X X - - -

Runtime:
d + c(n-1) + c

Runtime:
c

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

ArrayList.add() Runtime (2 of 2)

❖ Some applications cannot tolerate the “occasional O(n)
behavior”

❖ Other applications can tolerate “occasional O(n) behavior” if
we can show that it’s “not too bad” / “not too common”

32

Single
Execution

Multiple Executions

Worst Case:
Θ(N)

Aggregate Worst: Θ(N) Amortized Worst: ??

Best Case: Θ(1) Aggregate Best: Θ(1) Amortized Best: ??

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

ArrayList.add(): Best-Case Aggregate Runtime

33

X X X X

Best-case Aggregate Runtime:

- - - -

X - - -

X X - -

X X X -

X X X X

add(X)

add(X)

add(X)

add(X)

add(X)

CSE332, Spring 2021

gradescope.com/courses/256241

L04: Algorithm Analysis I; Algorithm Analysis II

34

- - - - - - - -

X X X X

X X X X - - - -

X X X X X - - -

Worst-case Aggregate Runtime:

- - - -

X - - -

X X - -

X X X -

X X X X

add(X)

add(X)

add(X)

add(X)

add(X)

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Amortized Analysis Intuition

❖ See Weiss, ch 11, for formal methods

❖ But the intuition is: if our client is willing to tolerate it, we will
“smooth” the aggregate cost of n operations over n itself

❖ Note: we increased our array size by a factor of n (eg, 2n, 3n,
etc). What if we increased it by a constant factor (eg, 1, 100,
1000) instead?

35

Single
Execution

Multiple Executions

Worst Case:
Θ(N)

Aggregate Worst: Θ(N) Amortized Worst: Θ(1)

Best Case: Θ(1) Aggregate Best: Θ(1) Amortized Best: Θ(1)

CSE332, Spring 2021L04: Algorithm Analysis I; Algorithm Analysis II

Summary

❖ Asymptotic analysis gives us a common “frame of reference”
with which to compare algorithms

▪ Most common comparisons are Big-O, Big-Omega, and Big-Theta

▪ But also little-o and little-omega

❖ Case Analysis != Asymptotic Analysis

❖ We combine asymptotic analysis and case analysis to compare
the behavior of data structures and algorithms

36

