
CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Algorithm Analysis I: Asymptotics
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L03: Algorithm Analysis I: Asymptotics

❖ Consider the following piece of code to find a value k in the array arr

❖ What, if any, assumptions does this code make about its inputs? What
happens when those assumptions are violated?

2

boolean f(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Announcements

❖ Project 1 released!

▪ Fill out the partner survey NOW (due by end of lecture)

▪ Checkpoint is a Gradescope-administered survey, not released yet

▪ git pull before you git push (we have a bugfix just for you)

❖ Lecture activities were graded and returned

▪ Remember that you get the points if the textbox is non-empty

❖ Office hours released!

▪ Reasonable coverage for most timezones

▪ Contact us to arrange a one-on-one if you can’t find a good time

3

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Lecture Outline

❖ A Computational Model for Describing Algorithm
Performance

❖ Using the Model to Compare Algorithms

❖ Review: Logarithms and Exponents

❖ Big-Oh Definitions

4

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Describing Algorithms: What Do We Care About?

❖ Correctness:

▪ Does the algorithm do what is intended

❖ Performance:

▪ Speed time complexity

▪ Memory space complexity

❖ Other attributes:

▪ Clarity, security, … equity?!?!

❖ Why analyze performance?

▪ To make good design decisions

▪ Enable you to examine an algorithm (or code) and identify
bottlenecks

5

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Q: How Should We Describe An Algorithms’
Performance?

6

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

A: How Should We Describe An Algorithms’
Performance?
❖ Uh, why NOT just run the program and time it??

▪ Too much variability; not reliable or portable

• Hardware: processor(s), memory, etc.

• Firmware: OS, Java version, libraries, drivers

• Other: implementation-specific quirks, other programs running, …

▪ Choice of input

• (Non-exhaustive) testing may miss worst-case input

• Benchmarks don’t describe or predict the relationship between input sizes

❖ Often want to evaluate an algorithm, not an implementation

7

An algorithm is more performant than another when, for sufficiently
large inputs, it runs in less time (our focus) or less space than the other

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Describing An Algorithms’ Performance

1. To be descriptive of large inputs (n), we need to understand:

▪ What do we consider to be “large”?

• If n is 10, probably any algorithm is fast enough

2. To characterize time (or space) without an implementation
and its input, we need a computational model that’s:

▪ Independent of CPU, programming language, coding tricks, etc.

▪ Rigorous and accurate; able to predict performance without an
implementation

8

An algorithm is more performant than
another when, for sufficiently large inputs, it
runs in less time or less space than the other

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

A Computational Model for Algorithms (1 of 3)

❖ We abstract away the computer by counting:

1. “elements” (space complexity)

2. “operations” (time complexity)

❖ Remember: “Independent of CPU, programming language,
coding tricks, etc.”

9

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

A Computational Model for Algorithms (2 of 3)

2. Basic elements take “some amount of” constant space

▪ Integers in an array

▪ Nodes in a linked list

▪ Etc.

▪ (This is an approximation of reality: a very useful “lie”.)

10

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

A Computational Model for Algorithms (3 of 3)

1. Basic operations take “some amount of” constant time

▪ Arithmetic

▪ Assignment

▪ Access one Java field or array index

▪ Etc.

▪ (Again, this is an approximation of reality)

❖

11

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Recurrence Solve recurrence equation

Function Calls Time of function’s body

Conditionals Time of condition + time of {slower/faster}
branch

???

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Which Branch To Analyze?

❖ Case Analysis != Asymptotic Analysis

❖ We generally talk about two cases:

▪ Worst-case complexity: max # steps algorithm takes on “most
challenging” input of size N

▪ Best-case complexity: min # steps algorithm takes on “easiest” input
of size N

▪ (there are other cases, but they’re harder to reason about)

❖ Unless otherwise stated, we usually refer to the worst case

▪ So we’ll analyze the slower branch

12

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Examples: From Code to Our Model

13

b = b + 5

c = b / a

b = c + 100

for (i = 0; i < n; i++) {

sum++;

}

if (j < 5) {

sum++;

} else {

for (i = 0; i < n; i++) {

sum++;

}

}

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Examples: From Code to Our Model

14

b = b + 5

c = b / a

b = c + 100

for (i = 0; i < n; i++) {

sum++;

}

if (j < 5) {

sum++;

} else {

for (i = 0; i < n; i++) {

sum++;

}

}

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Another Example

int coolFunction(int n, int sum) {

int i, j;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

sum++;

}

}

print "This program is great!“;

for (i = 0; i < n; i++) {

sum++;

}

return sum

}

15

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Another Example

int coolFunction(int n, int sum) {

int i, j;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

sum++;

}

}

print "This program is great!“;

for (i = 0; i < n; i++) {

sum++;

}

return sum

}

16

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Analyzing Loops, Formally

❖ In this model, we use summations to quantify the runtime

17

for (i = 0; i < n; i++) {

sum++;

}

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Analyzing Loops, Formally

❖ In this model, we use summations to quantify the runtime

18

for (i = 0; i < n; i++) {

sum++;

}

CSE332, Spring 2021

gradescope.com/courses/256241

L03: Algorithm Analysis I: Asymptotics

❖ What is the precise expression that describes findSorted()’s
runtime as a function of n = arr.length?

19

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

Example Soln: Linear Search

❖ What is the precise expression that describes
findSorted()’s runtime as a function of n =
arr.length?

20

CSE332, Spring 2021

gradescope.com/courses/256241

L03: Algorithm Analysis I: Asymptotics

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

❖ Assuming the following value for arr, what values for k yield the best
and worst runtimes?

21

Best k:

Worst k:

2 3 5 16 37 50 73 75 126

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

Worst Case = Slower Branch; Best Case = ???

❖ Assuming the following value for arr, what values for k yield
the best and worst runtimes?

22

Best k:

Worst k:

2 3 5 16 37 50 73 75 126

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

// Requires arr to be sorted

// Returns whether k is in array

boolean findSorted(int[] arr, int k) {

for(int i=0; i < arr.length; ++i) {

if(arr[i] == k)

return true;

else if(arr[i] > k)

return false;

}

return false;

}

Modeling an Algorithm’s Cases

❖ What is the precise expression that describes findSorted()’s best
and worst runtimes independent of its inputs?

23

Best case runtime: 8

Worst case runtime: 8n+2

A constant!

A linear function!

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Lecture Outline

❖ A Computational Model for Describing Algorithm Performance

❖ Using the Model to Compare Algorithms

❖ Review: Logarithms and Exponents

❖ Big-Oh Definitions

24

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Remember a faster search algorithm?

25

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Comparing Algorithms (1 of 2)

❖ “Binary search is O(log n) and linear is O(n) “

▪ But which algorithm is faster?

▪ Depending on specific case, constant factors, and size of n linear
search could be faster!

1. Specific case:

▪ For now, we’ll use worst case

2. Constant factors:

▪ How many assignments, additions, etc. for each n

3. Size of n:

▪ Remember: “Descriptive of large inputs”*

▪ So we pick n→∞ as our definition of “large”

26

* slide 9

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Comparing Algorithms (2 of 2)

❖ How formalize the idea of how an algorithm behaves as N→∞?

▪ There exists some n0 such that for all n > n0 binary search “wins”

❖ Let’s play with a couple plots to get some intuition…

27

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Example: Binary Search vs Linear Search

❖ Let’s “help” linear search “win”

▪ Run it on a computer 100x as fast (say 2018 model vs. 1990)

▪ Use a new compiler/language that is 3x as fast

▪ Be a clever programmer to eliminate half the work

▪ Each iteration is 600x as fast as in binary search

28

When we’re dealing with infinity, constants and lower-order terms
don’t meaningfully add to the final result

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Intuitive Simplifications

❖ When we’re dealing with infinity, constants and lower-order
terms don’t meaningfully add to the final result

❖ (1) Eliminate lower-order terms

▪ 6 +
1

2
N2 +

3

2
N + 1 +

1

2
N2 +

1

2
N +

1

2
N2 -

1

2
N + N2 + N

▪ 6 +
1

2
N2 +

3

2
N + 1 +

1

2
N2 +

1

2
N +

1

2
N2 -

1

2
N + N2 + N

▪
5

2
N2

❖ (2) Ignore multiplicative constants

▪
5

2
N2

▪ N2

29

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Why Does This Work?

Demo:
https://www.desmos.com/calculat
or/rl25eewwe3

30

N0

https://www.desmos.com/calculator/rl25eewwe3

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Lecture Outline

❖ A Computational Model for Describing Algorithm Performance

❖ Using the Model to Compare Algorithms

❖ Review: Logarithms and Exponents

❖ Big-Oh Definitions

31

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Logarithms and Exponents

❖ Definition: log2 x = y if x = 2y

▪ Note: since so much is binary in CS, log almost always means log2

❖ Just as exponents grow very quickly, logarithms grow very
slowly

▪ So, log2 1,000,000 = “a little under 20”

32

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Log base doesn’t matter (much)

❖ “Any base B log is equivalent to base 2 log within a constant
factor”

▪ And we are about to prove constant factors don’t matter!

▪ In particular, log2 x = 3.22 log10 x

❖ Why a constant multiplier ?

▪ logB x = (logA x) / (logA B)

33

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Review: Properties of logarithms

❖ log(A*B) = log A + log B

▪ So log(Nk)= k log N

❖ log(A/B) = log A – log B

❖ X =

❖ log(log x) is written log log x

▪ Grows as slowly as 22 grows fast

▪ Ex:

❖ (log x)(log x) is written log2x

▪ It is greater than log x for all x > 2
34

y

532log2loglog~4loglog 2

32

2222 ==billion

x2log2

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Logarithms and Exponents

35

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Logarithms and Exponents

36

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Logarithms and Exponents

37

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Lecture Outline

❖ A Computational Model for Describing Algorithm Performance

❖ Using the Model to Compare Algorithms

❖ Review: Logarithms and Exponents

❖ Big-Oh Definition

38

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Introduction: Asymptotic Notation

❖ About to show formal definition, which amounts to our earlier
intuitive simplifications:

▪ Eliminate lower-order terms

▪ Ignore multiplicative constants

❖ Examples:

▪ 4n + 5

▪ 0.5n log n + 2n + 7

▪ n3 + 2n + 3n

▪ n log (10n2)

39

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Big-Oh relates functions

❖ We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

❖ So (3n2+17) is in O(n2)

▪ 3n2+17 and n2 have the same asymptotic behavior

❖ Confusingly, we also say/write:

▪ (3n2+17) is O(n2)

▪ (3n2+17) ∈ O(n2)

▪ (3n2+17) = O(n2)  least ideal

❖ But we would never say O(n2) = (3n2+17)

40

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Big-Oh, Formally (1 of 3)

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

41

Note: n0  1 (and a natural number) and c > 0

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Big-Oh, Formally (2 of 3)

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

Note: n0  1 (and a natural number) and c > 0

To show g(n) is in O(f(n)), pick a c large enough to “cover the
constant factors” and n0 large enough to “cover the lower-
order terms”

42

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Big-Oh, Formally (3 of 3)

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

Note: n0  1 (and a natural number) and c > 0

Example: Let g(n) = 3n + 4 and f(n) = n
c = 4 and n0 = 5 is one possibility

Example: Let g(n) = 3n + 4 and f(n) = n5

c = 3 and n0 = 2 is one possibility

Example: Let g(n) = 3n + 4 and f(n) = 2n

c = 100000000 and n0 = 1 is one possibility
43

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Big-Oh, Formally (3 of 3)

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n)  c f(n) for all n  n0

Note: n0  1 (and a natural number) and c > 0

Example: Let g(n) = 3n + 4 and f(n) = n
c = 4 and n0 = 5 is one possibility

Example: Let g(n) = 3n + 4 and f(n) = n5

c = 3 and n0 = 2 is one possibility

Example: Let g(n) = 3n + 4 and f(n) = 2n

c = 100000000 and n0 = 1 is one possibility
44

CSE332, Spring 2021L03: Algorithm Analysis I: Asymptotics

Summary

❖ Complexity analyses use simplified cost models

❖ Asymptotic analysis can take liberties with mathematical
expressions because it deals with infinity

▪ Eg, dropping lower-order terms and constants

▪ But it gives us a common “frame of reference” with which to
compare algorithms, too!

❖ Case Analysis != Asymptotic Analysis

▪ Case analysis is a different axis on which to evaluate runtime
and space

❖ Review your log rules!
45

