YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Algorithm Analysis |I: Asymptotics
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

llII g.r ad e S Cop e gradescope.com/courses/256241

+ Consider the following piece of code to find a value k in the array arr

« What, if any, assumptions does this code make about its inputs? What
happens when those assumptions are violated?

boolean f (int[] arr, int k) {
for(int 1=0; 1 < arr.length; ++i) {
if(arr[i] == k)
return true;
else if (arr[i] > k)
return false;

}

return false;

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Announcements

+ Project 1 released!
= Fill out the partner survey NOW (due by end of lecture)
® Checkpoint is a Gradescope-administered survey, not released yet
" git pull beforeyou git push (we have a bugfix just for you)
1 1
+ Lecture activities were Zt graded Zt and returned
= Remember that you get the points if the textbox is non-empty

+ Office hours released!
= Reasonable coverage for most timezones
= Contact us to arrange a one-on-one if you can’t find a good time

YA UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics

Lecture Outline

+ A Computational Model for Describing Algorithm
Performance

+ Using the Model to Compare Algorithms

+ Review: Logarithms and Exponents

+ Big-Oh Definitions

CSE332, Spring 2021

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Describing Algorithms: What Do We Care About?

« Correctness:

® Does the algorithm do what is intended

+ Performance:

= Speed time complexity
= Memory space complexity

«» Other attributes:

= Clarity, security, ... equity?!?!

<« Why analyze performance?
" To make good design decisions

® Enable you to examine an algorithm (or code) and identify
bottlenecks

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Q: How Should We Describe An Algorithms’
Performance?

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

A: How Should We Describe An Algorithms’
Performance?

« Uh, why NOT just run the program and time it??

® Too much variability; not reliable or portable
« Hardware: processor(s), memory, etc.
« Firmware: OS, Java version, libraries, drivers
+ Other: implementation-specific quirks, other programs running, ...

® Choice of input
+ (Non-exhaustive) testing may miss worst-case input
« Benchmarks don’t describe or predict the relationship between input sizes

« Often want to evaluate an algorithm, not an implementation

An algorithm is more performant than another when, for sufficiently
large inputs, it runs in less time (our focus) or less space than the other

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Describing An Algorithms’ Performance

An algorithm is more performant than
another when, for sufficiently large inputs, it
runs in less time or less space than the other

1. To be descriptive of large inputs (n), we need to understand:

= What do we consider to be “large”?
If nis 10, probably any algorithm is fast enough

2. To characterize time (or space) without an implementation
and its input, we need a computational model that’s:

® Independent of CPU, programming language, coding tricks, etc.

= Rigorous and accurate; able to predict performance without an
implementation

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

A Computational Model for Algorithms (1 of 3)

« We abstract away the computer by counting:
1. “elements” (space complexity)
2. “operations” (time complexity)

« Remember: “Independent of CPU, programming language,
coding tricks, etc.”

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

A Computational Model for Algorithms (2 of 3)

2. Basic elements take “some amount of” constant space
" |[ntegers in an array
= Nodes in a linked list
" Etc.
® (This is an approximation of reality: a very useful “lie”.)

10

Y UNIVERSITY of WASHINGTON LO3: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

A Computational Model for Algorithms (3 of 3)

1.

Basic operations take “some amount of” constant time
= Arithmetic
® Assignment
= Access one Java field or array index
" Etc.
= (Again, this is an approximation of reality)

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body
Recurrence Solve recurrence equation

Function Calls Time of function’s body EEr

Conditionals Time of condition + time of {slower/faster}

branch

11

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Which Branch To Analyze?

/7
0.0

Case Analysis = Asymptotic Analysis

K/
0.0

We generally talk about two cases:

= Worst-case complexity: max # steps algorithm takes on “most
challenging” input of size N

= Best-case complexity: min # steps algorithm takes on “easiest” input
of size N

= (there are other cases, but they’re harder to reason about)

+ Unless otherwise stated, we usually refer to the worst case
= So we'll analyze the slower branch

12

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Examples: From Code to Our Model

b=Db+ 5

c b / a

b =c¢ + 100

for (1 = 0; 1 < n; i++) {
sum++;

}

if (J < 5) |
sumt++;

} else {
for (i
sum++;

0; 1 < n; 1i++) {

13

YA UNIVERSITY of WASHINGTON

€

LO3: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Examples: From Code to Our Model

b =b + 5&— Z
c=b / a Z. (o
b =c¢ + 100 2_

|+ Bn

sumt++;
} else {
for (1 = 0; 1 < n; i++)
sum++;

}

s

14

YA UNIVERSITY of WASHINGTON

LO3: Algorithm Analysis I: Asymptotics

Another Example

CSE332, Spring 2021

return sum

int coolFunction(int n, int sum) {
int 1, j;
for (1 = 0; 1 < n; i++) {
for (3 = 0; 3 < n; J++) {
sum++;
}
}
print "This program is great!"™;
for (1 = 0; 1 < n; i++) {
sum++;
}

15

YA UNIVERSITY of WASHINGTON

LO3: Algorithm Analysis I: Asymptotics

Another Example

CSE332, Spring 2021

int coolFunction(int n, int sum) {
int i, J;
(for (i = 0; 1 < n; i++) {
25“1 for (3 = 0; j < n; Jj++) |
*(b sum++; S+l
}
)
l [Print "This program 1is great!"Y;
for (1 = 0; 1 < n; i++) {
Soel sum++; Sh‘i’l
}
\ [;return sum
}

SEa+l) ‘|’\

16

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Analyzing Loops, Formally

+ In this model, we use summations to quantify the runtime

0; 1 < n; i++) {

for (1
sum++;

17

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Analyzing Loops, Formally

+ In this model, we use summations to quantify the runtime

18

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

llII g.r ad e S Cop e gradescope.com/courses/256241

« What is the precise expression that describes findSorted ()’s
runtime as a functionofn = arr.length?

// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
for(int 1=0; 1 < arr.length; ++1i) {
if(arr[i] == k)
return true;
else 1if (arr[i] > k)
return false;

}

return false;

19

YA UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics

Example Soln: Linear Search

« What is the precise expression that describes
findSorted ()’s runtime as a function of n

arr.length?

boolean flndSarted int arr, 1nt k)

return true,

clse it GEETIDO k)

return false;

CSE332, Spring 2021

N + 2

20

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

llII g.r ad e S Cop e gradescope.com/courses/256241

+ Assuming the following value for arr, what values for k yield the best
and worst runtimes?

2 3 5 |16 |37 |50 | 73 |75] 126

// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
for(int i=0; i < arr.length; ++i) {
if(arr[i] == k)
return true;
else if(arr[i] > k)
return false; Best k:

}
return false; Worst k:

21

YA UNIVERSITY of WASHINGTON LO3: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Worst Case = Slower Branch; Best Case = ???

« Assuming the following value for arr, what values for k yield
the best and worst runtimes?

2 3 5 |16 |37 |50 | 73 |75] 126

// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
for(int 1=0; i < arr.length; ++1i) {
if(arr[i] == k)
return true;
else if(arr[i] > k)
return false; Bestk: 7/

}
return false; Worst k: IZ(Q

22

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Modeling an Algorithm’s Cases

+ What is the precise expression that describes findSorted ()’s best
and worst runtimes independent of its inputs?

// Requires arr to be sorted
// Returns whether k is in array

boolean findSorted (int arr, int k) {
cordlit T OGer g (),
ifgarr [112€ k) ‘
else if(arr[i] > k)

return false; Best case runtime: 8
} A constant!

return false; Worst case runtime: 8n+2

} A linear function!

23

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Lecture Outline
« A Computational Model for Describing Algorithm Performance
+ Using the Model to Compare Algorithms

+ Review: Logarithms and Exponents

<+ Big-Oh Definitions

24

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Remember a faster search algorithm?

25

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Comparing Algorithms (1 of 2)

+ “Binary search is O(1og n) and linear is O(n) “
= But which algorithm is faster?

= Depending on specific case, constant factors, and size of n linear
search could be faster!

1. Specific case:

" For now, we’ll use worst case
2. Constant factors:

®= How many assignments, additions, etc. for each n
3. Size of n:

= Remember: “Descriptive of large inputs”*

= So we pick n—>e< as our definition of “large”

* slide 9

26

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Comparing Algorithms (2 of 2)

« How formalize the idea of how an algorithm behaves as N->oo?
= There exists some n, such that for all n > ny binary search “wins”

+ Let’s play with a couple plots to get some intuition...

27

W UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics CSE332, Spring 2021

Example: Binary Search vs Linear Search

« Let’s “help” linear search “win”
® Run it on a computer 100x as fast (say 2018 model vs. 1990)
= Use a new compiler/language that is 3x as fast
" Be a clever programmer to eliminate half the work
® Each iteration is 600x as fast as in binary search

=—4=—binary

=—4—binary

——linear —l—linear

q%b
q%b
{%b]
%]
%
%,
%,
1000
4000
7000

P S PSSP
A A S

When we’re dealing with infinity, constants and lower-order terms
don’t meaningfully add to the final result 2

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Intuitive Simplifications
« When we’re dealing with infinity, constants and lower-order

terms don’t meaningfully add to the final result

+ (1) Eliminate lower-order terms

"6 +SN2+SN+L1+=N2+=N+=N2-2N+N2+N
2 2 2 2 2 2

®5N2+®+1+%N2+®+%N2-®+N2+®

+ (2) lgnore multiplicative constants

oV

= 2

29

W UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics CSE332, Spring 2021

Why Does This Work?

Demo:
Plot of 40sin(N) 4 4N?
https://www.desmos.com/calculat \ m(Y))

or/rl25eewwe3

30

https://www.desmos.com/calculator/rl25eewwe3

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Lecture Outline
« A Computational Model for Describing Algorithm Performance
« Using the Model to Compare Algorithms

+ Review: Logarithms and Exponents

<+ Big-Oh Definitions

31

W UNIVERSITY of WASHINGTON

+ Definition: 1log, x

LO3: Algorithm Analysis I: Asymptotics

Logarithms and Exponents

yif x

" So, log, 1,000,000 = “a little under 20”

CSE332, Spring 2021

= Note: since so much is binary in CS, 1log almost always means log,

+ Just as exponents grow very quickly, logarithms grow very

1200000

1000000

800000

600000

400000

200000

0

R A A N S R AT AT A ey
T TS T e T

1234567829 1011121314151617181920

== 2"n

A2

logn

YA UNIVERSITY of WASHINGTON

LO3: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Log base doesn’t matter (much)

« “Any base B log is equivalent to base 2 log within a constant
factor”

= And we are about to prove constant factors don’t matter!
" |n particular, log, x = 3.22 log,, X

« Why a constant multiplier ?
" logy x = (log, x) / (log, B)

33

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Review: Properties of logarithms

+ log(A*B) = log A + log B
"So log(N*)= k log N

+log(A/B) = log A - log B
X
o X = Iogz 2
y
+ log(log x) iswritten log log x

" Grows as slowly as 22 grows fast

" Ex: log, log, 4billion ~ log, log, 2* =log, 32=5

» (log x) (log x) is written log?x
"= |t is greater than log xforallx > 2

34

W UNIVERSITY of WASHINGTON

Logarithms and Exponents

LO3: Algorithm Analysis I: Asymptotics

CSE332, Spring 2021

35

30

25

20

15

10

—————
- cxm— A
1 2 3 4 5

== 2 /n
b [\ A)

—le=log n

35

W UNIVERSITY of WASHINGTON L03: Algorithm Analysis |: Asymptotics CSE332, Spring 2021

Logarithms and Exponents

3000

2500

2000 +|
== 2n

1500 =nh2
——n

1000 . —=log n

500

0
135 7 91113151719212325272931333537394143454749

36

W UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics CSE332, Spring 2021

Logarithms and Exponents

25

—=—T

—=—logn

1 2 3 456 7 8 91011121314151617 181920

37

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Lecture Outline

« A Computational Model for Describing Algorithm Performance

« Using the Model to Compare Algorithms

+ Review: Logarithms and Exponents

+ Big-Oh Definition

38

YA UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics

CSE332, Spring 2021

Introduction: Asymptotic Notation

« About to show formal definition, which amounts to our earlier
intuitive simplifications:

® Eliminate lower-order terms

= |lgnore multiplicative constants

« Examples:
" 4n+5
" 05nlogn+2n+7
= n3+2"+3n
= nlog(10n?)

39

YA UNIVERSITY of WASHINGTON LO3: Algorithm Analysis |: Asymptotics

CSE332, Spring 2021

Big-Oh relates functions

+ We use O on a function f(n) (for example n?) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

% S0 (3n%+17) is in O(n?)

= 3n%+17 and n? have the same asymptotic behavior

+ Confusingly, we also say/write:
= (3n%+17) is O(n?)
" (3n%2+17) € 0(n?)
" (3n%2+17) = 0O(n?)

+ But we would never say O(n?) = (3n%+17)

40

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Big-Oh, Formally (1 of 3)

Definition: g(n)is in O(f(n)) iff there exist
positive constants ¢ and n, such that

g(n) £ cf(n) forallnzn,

Note: n,=1 (and a natural number) and ¢ >0

‘.i;*hh TI

41

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Big-Oh, Formally (2 of 3) T y
Definition: g(n)is in O(f(n)) iff there exist 3&) .
positive constants ¢ and n, such that No —> N

g(n) £ cf(n) forallnzn,

Note: n,> 1 (and a natural number)and c >0

To show g(n) isin O(f(n)), pick a c large enough to “cover the
constant factors” and n,large enough to “cover the lower-
order terms”

42

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Big-Oh, Formally (3 of 3) T y
Definition: g(n)is in O(f(n)) iff there exist 3&) .
positive constants ¢ and n, such that No —> N

g(n) £ cf(n) forallnzn,

Note: n,> 1 (and a natural number)and c >0

Example: Let g(n) =3n+4 and f(n) =n

c=4and n, =5 is one possibility
Example: Let g(n) =3n + 4 and f(n) = n°

c=3and n, = 2 is one possibility
Example: Let g(n) =3n + 4 and f(n) = 2"

¢ = 100000000 and n, = 1 is one possibility

43

YA UNIVERSITY of WASHINGTON L03: Algorithm Analysis I: Asymptotics CSE332, Spring 2021

Big-Oh, Formally (3 of 3) T £

Definition: g(n)is in O(f(n)) iff there exist X
positive constants ¢ and n, such that No —> N

g(n) £ cf(n) forallnzn,

Note: n,> 1 (and a natural number)and c >0

Example: Let g(n) =3n+4 and f(n) =n 3{”’*—44" Vn>5
c=4and n, =5 is one possibility <+ Dnrd € 0tn)
Example: Let g(n) = 3n + 4 and f(n) = n® 3n+4 &3> Vn2>Z
2 3n+Y € On®)
c=3and n, = 2 is one possibility

Example: Let g(n) = 3n + 4 and f(n) = 2" 344 £ jo0000000.7"

¢ = 100000000 and n, = 1 is one possibility ~ ° "zl
. .. %“"’46 O(Z) 44

W UNIVERSITY of WASHINGTON

LO3: Algorithm Analysis I: Asymptotics

CSE332, Spring 2021

Summary

« Complexity analyses use simplified cost models

« Asymptotic analysis can take liberties with mathematical
expressions because it deals with infinity

= Eg, dropping lower-order terms and constants

® But it gives us a common “frame of reference” with which to
compare algorithms, too!

+ Case Analysis |= Asymptotic Analysis

= Case analysis is a different axis on which to evaluate runtime
and space

+ Review your log rules!

45

