Algorithm Analysis I: Asymptotics

CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:
Aayushi Modi Khushi Chaudhari
Patrick Murphy
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Richard Jiang
Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

*ll gradescope

* Consider the following piece of code to find a value k in the array arr
* What, if any, assumptions does this code make about its inputs? What happens when those assumptions are violated?

```
boolean f(int[] arr, int k) {
    for(int i=0; i < arr.length; ++i) {
    if(arr[i] == k)
        return true;
    else if(arr[i] > k)
        return false;
    }
    return false;
}
```


Announcements

* Project 1 released!
- Fill out the partner survey NOW (due by end of lecture)
- Checkpoint is a Gradescope-administered survey, not released yet
- git pull before you git push (we have a bugfix just for you)
* Lecture activities were graded and returned
- Remember that you get the points if the textbox is non-empty
* Office hours released!
- Reasonable coverage for most timezones
- Contact us to arrange a one-on-one if you can't find a good time

Lecture Outline

* A Computational Model for Describing Algorithm Performance
* Using the Model to Compare Algorithms
* Review: Logarithms and Exponents
* Big-Oh Definitions

Describing Algorithms: What Do We Care About?

* Correctness:
- Does the algorithm do what is intended
* Performance:
- Speed
time complexity
- Memory
space complexity
* Other attributes:
- Clarity, security, ... equity?!?!
* Why analyze performance?
- To make good design decisions
- Enable you to examine an algorithm (or code) and identify bottlenecks

Q: How Should We Describe An Algorithms' Performance?

A: How Should We Describe An Algorithms' Performance?

* Uh, why NOT just run the program and time it??
- Too much variability; not reliable or portable
- Hardware: processor(s), memory, etc.
- Firmware: OS, Java version, libraries, drivers
- Other: implementation-specific quirks, other programs running, ...
- Choice of input
- (Non-exhaustive) testing may miss worst-case input
- Benchmarks don't describe or predict the relationship between input sizes
* Often want to evaluate an algorithm, not an implementation

An algorithm is more performant than another when, for sufficiently large inputs, it runs in less time (our focus) or less space than the other

Describing An Algorithms' Performance

> An algorithm is more performant than another when, for sufficiently large inputs, it runs in less time or less space than the other

1. To be descriptive of large inputs (n), we need to understand:

- What do we consider to be "large"?
- If n is 10 , probably any algorithm is fast enough

2. To characterize time (or space) without an implementation and its input, we need a computational model that's:

- Independent of CPU, programming language, coding tricks, etc.
- Rigorous and accurate; able to predict performance without an implementation

A Computational Model for Algorithms (1 of 3)

* We abstract away the computer by counting:

1. "elements" (space complexity)
2. "operations" (time complexity)

* Remember: "Independent of CPU, programming language, coding tricks, etc."

A Computational Model for Algorithms (2 of 3)

2. Basic elements take "some amount of" constant space

- Integers in an array
- Nodes in a linked list
- Etc.
- (This is an approximation of reality: a very useful "lie".)

A Computational Model for Algorithms (3 of 3)

1. Basic operations take "some amount of" constant time

- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.
- (Again, this is an approximation of reality)

Consecutive statements	Sum of time of each statement
Loops	Num iterations * time for loop body
Recurrence	Solve recurrence equation
Function Calls	Time of function's body
Conditionals	Time of condition + time o? branch

Which Branch To Analyze?

* Case Analysis != Asymptotic Analysis
* We generally talk about two cases:
- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size N
- (there are other cases, but they're harder to reason about)
* Unless otherwise stated, we usually refer to the worst case
- So we'll analyze the slower branch

Examples: From Code to Our Model

$$
\begin{aligned}
\mathrm{b} & =\mathrm{b}+5 \\
\mathrm{c} & =\mathrm{b} / \mathrm{a} \\
\mathrm{~b} & =\mathrm{c}+100
\end{aligned}
$$

```
for (i = 0; i < n; i++) {
    sum++;
    }
```

```
if (j < 5)
```

 sum++;
 \} else
for $(i=0 ; i<n ; i++)$
sum++;
\}
\}

Examples: From Code to Our Model
(1)

(2)

(3)

Another Example

```
int coolFunction(int n, int sum) {
    int i, j;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            sum++;
        }
    }
    print "This program is great!";
    for (i = 0; i < n; i++) {
        sum++;
    }
    return sum
}
```

Another Example

Analyzing Loops, Formally

* In this model, we use summations to quantify the runtime

```
for (i = 0; i < n; i++) {
    sum++;
}
```

Analyzing Loops, Formally

* In this model, we use summations to quantify the runtime

$$
\sum_{i=0}^{n-1} 5 \Rightarrow 5 n
$$

„ll gradescope

* What is the precise expression that describes findSorted ()'s runtime as a function of $n=$ arr.length?

```
// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
    for(int i=0; i < arr.length; ++i) {
        if(arr[i] == k)
            return true;
        else if(arr[i] > k)
            return false;
    }
    return false;
}
```


Example Soln: Linear Search

* What is the precise expression that describes findSorted ()'s runtime as a function of $n=$ arr.length?

*lı gradescope

* Assuming the following value for arr, what values for k yield the best and worst runtimes?

2	3	5	16	37	50	73	75	126

```
// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
    for(int i=0; i < arr.length; ++i) {
    if(arr[i] == k)
            return true;
    else if(arr[i] > k)
        return false;
    }
    return false;
}
Best k:
Worst k:
```


Worst Case = Slower Branch; Best Case = ???

* Assuming the following value for arr, what values for k yield the best and worst runtimes?

2	3	5	16	37	50	73	75	126

```
// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
    for(int i=0; i < arr.length; ++i) {
    if(arr[i] == k)
        return true;
    else if(arr[i] > k)
        return false;
    }
    return false;
}
Best k: 2
worst k: 126
```


Modeling an Algorithm's Cases

* What is the precise expression that describes findSorted ()'s best and worst runtimes independent of its inputs?

```
// Requires arr to be sorted
// Returns whether k is in array
boolean findSorted(int[] arr, int k) {
    for(int i=0; i < arr.length; ++i) {
        returntrue;
    else if(arr[i] > k)
        return false;
    }
    return false;
}
```

Best case runtime: 8
A constant!
Worst case runtime: $8 n+2$
A linear function!

Lecture Outline

* A Computational Model for Describing Algorithm Performance
* Using the Model to Compare Algorithms
* Review: Logarithms and Exponents
* Big-Oh Definitions

Remember a faster search algorithm?

Comparing Algorithms (1 of 2)

* "Binary search is $O(\log n)$ and linear is $O(n)$ "
- But which algorithm is faster?
- Depending on specific case, constant factors, and size of n linear search could be faster!

1. Specific case:

- For now, we'll use worst case

2. Constant factors:

- How many assignments, additions, etc. for each n

3. Size of n :

- Remember: "Descriptive of large inputs"*
- So we pick $n \rightarrow \infty$ as our definition of "large"

Comparing Algorithms (2 of 2)

* How formalize the idea of how an algorithm behaves as $\mathrm{N} \rightarrow \infty$?
- There exists some n_{0} such that for all $n>\mathrm{n}_{0}$ binary search "wins"
* Let's play with a couple plots to get some intuition...

Example: Binary Search vs Linear Search

* Let's "help" linear search "win"
- Run it on a computer 100x as fast (say 2018 model vs. 1990)
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work
- Each iteration is 600x as fast as in binary search

When we're dealing with infinity, constants and lower-order terms don't meaningfully add to the final result

Intuitive Simplifications

* When we're dealing with infinity, constants and lower-order terms don't meaningfully add to the final result
* (1) Eliminate lower-order terms
- $6+\frac{1}{2} N^{2}+\frac{3}{2} N+1+\frac{1}{2} N^{2}+\frac{1}{2} N+\frac{1}{2} N^{2}-\frac{1}{2} N+N^{2}+N$
(c) $\frac{1}{2} \mathrm{~N}^{2}+2+1+\frac{1}{2} \mathrm{~N}^{2}+(1)+\frac{1}{2} \mathrm{~N}^{2}-N+\mathrm{N}^{2}+\infty$
- $\frac{5}{2} N^{2}$
* (2) Ignore multiplicative constants

- N^{2}

Why Does This Work?

Demo:
https://www.desmos.com/calculat or/rl25eewwe3

Lecture Outline

* A Computational Model for Describing Algorithm Performance
* Using the Model to Compare Algorithms
* Review: Logarithms and Exponents
* Big-Oh Definitions

Logarithms and Exponents

* Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- Note: since so much is binary in CS, \log almost always means $\log _{2}$
* Just as exponents grow very quickly, logarithms grow very slowly
- So, $\log _{2} 1,000,000=$ "a little under 20"

Log base doesn't matter (much)

* "Any base B log is equivalent to base 2 log within a constant factor"
- And we are about to prove constant factors don't matter!
- In particular, $\log _{2} \mathbf{x}=3.22 \log _{10} \mathbf{x}$
* Why a constant multiplier ?
$\cdot \log _{\mathrm{B}} \mathbf{x}=\left(\log _{\mathrm{A}} \mathbf{x}\right) /\left(\log _{\mathrm{A}} \mathrm{B}\right)$

Review: Properties of logarithms

$* \log (A * B)=\log A+\log B$

- So $\log \left(\mathbf{N}^{\mathrm{k}}\right)=\mathrm{k} \log \mathrm{N}$
$* \log (A / B)=\log A-\log B$
$\% \mathbf{x}=\log _{2} 2^{x}$
$: \log (\log x)$ is written ${ }^{y} \log \log x$
- Grows as slowly as 2^{2} grows fast
- Ex: $\log _{2} \log _{2}$ 4billion $\sim \log _{2} \log _{2} 2^{32}=\log _{2} 32=5$
$\%(\log x)(\log x)$ is written $\log ^{2} \mathbf{x}$
- It is greater than $\log \mathbf{x}$ for all $\mathbf{x}>2$

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Lecture Outline

* A Computational Model for Describing Algorithm Performance
* Using the Model to Compare Algorithms
* Review: Logarithms and Exponents
* Big-Oh Definition

Introduction: Asymptotic Notation

* About to show formal definition, which amounts to our earlier intuitive simplifications:
- Eliminate lower-order terms
- Ignore multiplicative constants
* Examples:
- $4 n+5$
- $0.5 n \log n+2 n+7$
- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

Big-Oh relates functions

* We use O on a function $f(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$
* So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
- $3 n^{2}+17$ and n^{2} have the same asymptotic behavior
* Confusingly, we also say/write:
- $\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
- $\left(3 n^{2}+17\right) \in O\left(n^{2}\right)$
- $\left(3 n^{2}+17\right)=O\left(n^{2}\right) \leftarrow$ least ideal
* But we would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

Big-Oh, Formally (1 of 3)

Definition: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

Note: $n_{0} \geq 1$ (and a natural number) and $c>0$

Big-Oh, Formally (2 of 3)

Definition: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_{0} such that

$g(n) \leq c f(n) \quad$ for all $n \geq n_{0}$

Note: $n_{0} \geq 1$ (and a natural number) and $c>0$
To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lowerorder terms"

Big-Oh, Formally (3 of 3)

Definition: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_{0} such that
$\mathrm{g}(\mathrm{n}) \leq \mathrm{cf}(\mathrm{n}) \quad$ for all $\boldsymbol{n} \geq n_{0}$

Note: $n_{0} \geq 1$ (and a natural number) and $c>0$

Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=n$
$c=4$ and $n_{0}=5$ is one possibility
Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=n^{5}$
$c=3$ and $n_{0}=2$ is one possibility
Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=2^{n}$
$c=100000000$ and $n_{0}=1$ is one possibility

Big-Oh, Formally (3 of 3)

Definition: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_{0} such that
$\mathrm{g}(\mathrm{n}) \leq \mathrm{cf}(\mathrm{n}) \quad$ for all $\boldsymbol{n} \geq n_{0}$

Note: $n_{0} \geq 1$ (and a natural number) and $c>0$

Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=n \quad 3 n+4 \leq 4 n \quad \forall n \geq 5$ $c=4$ and $n_{0}=5$ is one possibility
Example: Let $\mathrm{g}(n)=3 n+4$ and $f(n)=n^{5} \begin{gathered}3 n+4 \leq 3 n^{5} \\ : 3 n+4 \in O\left(n^{5}\right)\end{gathered} \quad \begin{gathered}3 \\ \substack{ \\3}\end{gathered}$ $c=3$ and $n_{0}=2$ is one possibility
Example: Let $\mathrm{g}(n)=3 n+4$ and $\mathrm{f}(n)=2^{n} \quad 3 n+4 \leq 100000000 \cdot 2^{n}$
$c=100000000$ and $n_{0}=1$ is one possibility

$$
\forall n \geqslant 1
$$

Summary

* Complexity analyses use simplified cost models
* Asymptotic analysis can take liberties with mathematical expressions because it deals with infinity
- Eg, dropping lower-order terms and constants
- But it gives us a common "frame of reference" with which to compare algorithms, too!
* Case Analysis != Asymptotic Analysis
- Case analysis is a different axis on which to evaluate runtime and space
* Review your log rules!

