
CSE332, Spring 2021L02: Dictionary ADT, Tries

Dictionary and Set ADTs; Tries
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L02: Dictionary ADT, Tries

❖ (Remember: forming an opinion and answering questions – even if the
opinion turns out to be wrong – helps you learn better. Please engage
in these activities as you prepare for lecture)

❖ We’ve discussed Stack, Queue, and List ADTs. Let’s imagine a
“Dictionary” ADT, which maps words (“keys”) to their definitions
(“values”)

❖ Design a data structure to implement this ADT

▪ What methods should it have?

▪ How should it store the data?

❖ This data structure should be new to you; please do not design
something you already know!

2

CSE332, Spring 2021L02: Dictionary ADT, Tries

Announcements

❖ Before section tomorrow, try gitlab and IntelliJ, so TAs can help
debug any issues during section

❖ Lecture recordings are in Panopto, not in Zoom.

3

CSE332, Spring 2021L02: Dictionary ADT, Tries

Lecture Outline

❖ Review: ADTs we know

❖ Dictionary and Set ADTs

❖ The trie data structure

▪ Introduction

▪ Implementation

▪ Prefix matching

4

CSE332, Spring 2021L02: Dictionary ADT, Tries

ADTs So Far (1 of 2)

5

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index

• A list has a size defined as the

number of elements in the list

• Elements can be added to the

front, back, or any index in the list

• Optionally, elements can be

removed from the front, back, or

any index in the list

❖ Data structures that
implement the List ADT
include LinkedList and
ArrayList

❖ When we restrict List’s
functionality, we end up with
the 2 other ADTs we’ve seen
so far

CSE332, Spring 2021L02: Dictionary ADT, Tries

ADTs So Far (2 of 2)

❖ Data structures that implement these ADTs
are variants of LinkedList and ArrayList

6

Queue ADT. A collection storing

an ordered sequence of

elements.

• A queue has a size defined as

the number of elements in

the queue

• Elements can only be added

to one end and removed from

the other (“FIFO”)

Stack ADT. A collection storing

an ordered sequence of

elements.

• A stack has a size defined as

the number of elements in

the stack

• Elements can only be added

and removed from the top

(“LIFO”)

CSE332, Spring 2021L02: Dictionary ADT, Tries

Lecture Outline

❖ Review: ADTs we know

❖ Dictionary and Set ADTs

❖ The trie data structure

▪ Introduction

▪ Implementation

▪ Prefix matching

7

CSE332, Spring 2021L02: Dictionary ADT, Tries

Dictionary ADT (1 of 2)

❖ Also known as “Map ADT”

▪ add(k, v)

▪ contains(k)

▪ find(k)

▪ remove(k)

❖ Naïve implementation: a list of
(key, value) pairs

8

Dictionary ADT. A collection of keys,

each associated with a value.

• A dictionary has a size defined as

the number of elements in the

dictionary

• You can add and remove (key,

value) pairs , but the keys are

unique

• Each value is accessible by its key

via a “find” or “contains” operation

class KVPair<Key, Value> {

Key k;

Value v;

}

LinkedList<KVPair> dict;

Terminology: a dictionary
maps keys to values; an item
or data refers to the (key,
value) pair

CSE332, Spring 2021L02: Dictionary ADT, Tries

Dictionary ADT (2 of 2)

❖ Operations:

▪ add(k, v):

• places (k,v) in dictionary

• if key already present, typically
overwrites existing entry

▪ find(k):

• Returns v associated with k

▪ contains(k):

• Returns true if k is in the dictionary

▪ remove(k):

• …

9

…

• hctang

Hannah

Tang

…

• rea

Ruth

Anderson

…

add(hctang,

Hannah Tang)

find(rea)

Ruth Anderson

We will tend to emphasize the keys, but don’t forget about the stored values!

CSE332, Spring 2021L02: Dictionary ADT, Tries

A Modest Few Uses for Dictionaries

❖ Any time you want to store information according to some key
and be able to retrieve it efficiently – a dictionary is the ADT to
use!

▪ Lots of programs do that!

10

10

Networks Router tables

Operating systems Page tables

Compilers Symbol tables

Databases Dictionaries with other nice
properties

Search Inverted indices, phone
directories, …

Biology Genome maps

CSE332, Spring 2021L02: Dictionary ADT, Tries

Set ADT

11

Set ADT. A collection of keys.

• A set has a size defined as the

number of elements in the set

• You can add and remove keys, but

the contained values are unique

• Each key is accessible via a

“contains” operation

class Item<Key> {

Key k;

}

LinkedList<Item> set;

❖ Operations:

▪ add(v)

▪ contains(v)

▪ remove(v)

❖ Naïve implementation: a
dictionary where we ignore the
“value” portion of the (key,
value) pair

CSE332, Spring 2021

gradescope.com/courses/256241

L02: Dictionary ADT, Tries

❖ What, if any, differences are there between a Set and a Dictionary
ADT?

▪ Remember that this is a difference in functionality, not in implementation

❖ Similar to our earlier example with savory pies, can the same data
structure(s) be used to implement a Set and a Dictionary?

▪ Yes

▪ No

12

CSE332, Spring 2021L02: Dictionary ADT, Tries

Comparison: Set ADT vs. Dictionary ADT

❖ The Set ADT is like a Dictionary without any values

▪ A key is present or not (no repeats)

❖ For contains, add, remove, there is little difference

▪ In dictionary, values are “just along for the ride”

▪ So same data-structure ideas work for dictionaries and sets

• Java HashSet implemented using a HashMap, for instance

❖ Set ADT may have other important operations

▪ union, intersection, isSubset, etc.

▪ Notice these are binary operators on sets

▪ We will want different data structures to implement these operators

13

CSE332, Spring 2021L02: Dictionary ADT, Tries

Lecture Outline

❖ Review: ADTs we know

❖ Dictionary and Set ADTs

❖ The trie data structure

▪ Introduction

▪ Implementation

▪ Prefix matching

14

CSE332, Spring 2021L02: Dictionary ADT, Tries

The Trie: A Specialized Data Structure

15

❖ Tries view its keys as:

▪ a sequence of characters

▪ some (hopefully many!) sequences share common prefixes

a

md p

e

w

l

s

Trie

sa
• sap

• sad

• awls

• a

• same

• sam

Set ADT

CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie: An Introduction

❖ Each level of the tree represents an index
in the string

▪ Children at that level represent possible
characters at that index

❖ This abstract trie stores the set of strings:

▪ awls, a, sad, same, sap, sam

❖ How to deal with a and awls?

▪ Mark which nodes complete a string (shown
in purple)

16

s

a

md p

e

a

w

l

s

CSE332, Spring 2021L02: Dictionary ADT, Tries

Searching in Tries

17

Two ways to fail a contains() check:

1. If we fall off the tree

2. If the final node isn’t purple (not a key)
s

a

md p

e

a

w

l

s

Fall Off? / Is Key? Result

hit / purple True

hit / white False

hit / purple True

fell off / n/a False

Input String

contains(“sam”)

contains(“sa”)

contains(“a”)

contains(“saq”)

CSE332, Spring 2021L02: Dictionary ADT, Tries

Keys as “a sequence of characters” (1 of 2)

❖ Most dictionaries treat their keys as an “atomic blob”: you
can’t disassemble the key into smaller components

❖ Tries take the opposite view: keys are a sequence of characters

▪ Strings are made of Characters

❖ But “characters” don’t have to come from the Latin alphabet

▪ Character includes most Unicode codepoints (eg, 蛋糕)

▪ List<E>

▪ byte[]

18

CSE332, Spring 2021L02: Dictionary ADT, Tries

Keys as “a sequence of characters” (2 of 2)

❖ But “characters” don’t have to come from the Latin alphabet

▪ Character includes most Unicode codepoints (eg蛋糕)

▪ List<E>

▪ byte[]

❖ Tries are defined by 3 types instead of 2:

▪ An “alphabet”: the domain of the characters

▪ A “key”: a sequence of “characters” from the alphabet

▪ A “value”: the usual Dictionary value

19

CSE332, Spring 2021L02: Dictionary ADT, Tries

Lecture Outline

❖ Review: ADTs we know

❖ Dictionary and Set ADTs

❖ The trie data structure

▪ Introduction

▪ Implementation

▪ Prefix matching

Lecture questions: pollev.com/cse332

20

CSE332, Spring 2021L02: Dictionary ADT, Tries

21

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation*

22

public class TrieSet {

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;

isKey = b;

next = new HashMap();

}

}

}

s

a

md p

e

a

w

l

s

* This implementation won’t work for your
HashTrieNode; don’t bother copy-and-pasting

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Node Implementation

23

private static class Node {

private char ch;

private boolean isKey;

private Map<char, Node> next;

...

}

ch a

isKey true

next

y

Node

Map

ch y

isKey false

next

Node

a

y

…

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation

24

public class TrieSet {

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;

isKey = b;

next = new HashMap();

}

}

}

s

a

d

a

w

l

a s

a

d

w

l

...

...
...

...

...

...

... ...

CSE332, Spring 2021L02: Dictionary ADT, Tries

Removing Redundancy

25

public class TrieSet {

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private Map<char, Node> next;

private Node(char c, boolean b) {

ch = c;

isKey = b;

next = new HashMap();

}

}

}

s

a

d

a

w

l

a s

a

d

w

l

...

...

...

...

...

... ...

CSE332, Spring 2021

gradescope.com/courses/256241

L02: Dictionary ADT, Tries

❖ Does the structure of a trie depend on the order in which
strings are inserted?

A. Yes

B. No

C. I’m not sure

26

a s

a

d

w

l

...

...
...

...

...

...

... ...

CSE332, Spring 2021L02: Dictionary ADT, Tries

Lecture Outline

❖ Review: ADTs we know

❖ Dictionary and Set ADTs

❖ The trie data structure

▪ Introduction

▪ Implementation

▪ Prefix matching

Lecture questions: pollev.com/cse332

27

CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie-Specific Operations

❖ The main appeal of tries is prefix matching!

▪ Why? Because they view their keys as
sequences that can have prefixes

❖ Longest prefix

▪ longestPrefixOf("sample")

▪ Want: {"sam"}

❖ Prefix match

▪ findPrefix("sa")

▪ Want: {"sad", "sam", "same", "sap"}

28

s

a

md p

e

a

w

l

s

CSE332, Spring 2021L02: Dictionary ADT, Tries

Related Problem: Collecting Trie Keys

❖ Imagine an algorithm that collects all the keys in a trie:

▪ collect(): ["a","awls","sad","sam","same","sap"]

❖ It could be implemented as follows:

❖ How would colHelp() be implemented?

29

sa

w

Create an empty list of results x

Foreach character c in root.next.keys():

call colHelp(c, x, root.next.get(c))

return x

colHelp(String s, List<String> x, Node n) {

// TODO(me): implement this

}

CSE332, Spring 2021

gradescope.com/courses/256241

L02: Dictionary ADT, Tries

❖ Implement colHelp() in pseudocode

30

sa

w

List<String> collect(Node root) {

List<String> x;

Foreach character c in root.next.keys():

colHelp(c, x, root.next.get(c))

return x

}

colHelp(String s, List<String> x, Node n) {

// TODO(me): implement this

}

CSE332, Spring 2021L02: Dictionary ADT, Tries

Collecting Trie Keys: Solution

❖ Imagine an algorithm that collects all the keys in a trie:

▪ collect(): ["a","awls","sad","sam","same","sap"]

❖ How would colHelp() be implemented?

31

sa

w

colHelp(String s, List<String> x,

Node n) {

If n.isKey

x.add(s)

Foreach character c in n.next.keys():

colHelp(s + c, x, n.next.get(c)).

}

CSE332, Spring 2021L02: Dictionary ADT, Tries

colHelp("a", x,)

colHelp("aw", x,)

colHelp("awl", x,)

colHelp("awls", x,)

Collecting Trie Keys: Demo

32

s

a

md p

e

a

w

l

s

collect(): []collect(): [

"a",

]

collect(): [

"a",

"awls",

]

colHelp(String s, List<String> x, Node n) {

If n.isKey

x.add(s)

Foreach character c in n.next.keys():

colHelp(s + c, x, n.next.get(c)).

}

CSE332, Spring 2021L02: Dictionary ADT, Tries

Collecting Trie Keys: Demo

33

s

a

md p

e

a

w

l

s

collect(): []collect(): [

"a",

]

collect(): [

"a",

"awls",

"sad",

"sam",

"same",

"sap"

]

colHelp(String s, List<String> x, Node n) {

If n.isKey

x.add(s)

Foreach character c in n.next.keys():

colHelp(s + c, x, n.next.get(c)).

}

CSE332, Spring 2021L02: Dictionary ADT, Tries

Prefix Operations with Tries

❖ Now that we have colHelper(), how would you implement
an algorithm for findPrefix()?

❖ findPrefix("sa") should return:

▪ ["sad","sam","same","sap"]

34

s

a

md p

e

a

w

l

s

CSE332, Spring 2021L02: Dictionary ADT, Tries

Summary

❖ The Dictionary ADT maps keys to values

❖ The Set ADT is like a Dictionary without any values

❖ A trie data structure implements the Dictionary and Set ADTs

❖ Tries have many different implementations

▪ Could store HashMap/TreeMap/any-dictionary within nodes

▪ Much more exotic variants change the trie’s representation, such as
the Ternary Search Trie

❖ Tries store sequential keys

▪ … which enables very efficient prefix operations like findPrefix

35

