
CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Intro; ADTs; Lists, Stacks, and Queues
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L01: Intro; ADTs; Lists, Stacks, and Queues

2

❖ (Breakout rooms are hit-or-miss. But research shows that y’all learn better by:

▪ Practicing with the materials

▪ Forming an opinion / answering questions – even if the opinion turns out to be wrong

❖ So I’m not going to do group activities. But I still need you to engage

▪ ie, write down your answers on paper or complete the ungraded Gradescope activity

❖ Give a (very specific) example of the following:

1. Pie (if your student ID is odd)

2. Main course (if your student ID is even)

❖ Example:

1. Sour cherry pie with a butter (not shortening) crust and canned cherries

2. Fried rice (楊州炒飯 – with 叉燒, not 火腿 or 臘腸)

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Lecture Outline

❖ Introduction: Why This Course?

❖ About This Course
▪ Learning Objectives

▪ People

▪ Policies

❖ Abstract and Concrete Data Types

❖ List, Stack, and Queue ADTs

3

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Why: Increase Progress (?) in Society

4

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Why: Discover New Knowledge

5

Fake News: A Survey of Research, Detection Methods, and Opportunities (Xinyi Zhou, Reza Zafarani/arXiv:1812.00315)

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Why: Support Daily Life

6

How to search the internet

About 7,470,000,000 results (0.60 seconds)

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Lecture Outline

❖ Introduction: Why This Course?

❖ About This Course

▪ Learning Objectives

▪ People

▪ Policies

❖ Abstract and Concrete Data Types

❖ List, Stack, and Queue ADTs

7

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Learning Objectives

❖ Learn fundamental data structures and algorithms

▪ “Classic” data structures and algorithms

• Queues, dictionaries, graphs, sorting, etc.

❖ Learn thought processes/patterns for organizing and
processing information

▪ Understand how to analyze their efficiency

▪ Learn how to analyze tradeoffs and pick “the right tool for the job”

▪ Parallelism and concurrency (!)

❖ This isn’t a “how to program” or “software engineering” class!

▪ We will practice design, analysis, and implementation

▪ Witness elegant interplay of “theory” and “engineering” at the core
of computer science 8

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Course Content

❖ What do we mean by “Data Structures and Parallelism”?

❖ About 70% of the course is a “classic data-structures course”
▪ Timeless, essential stuff

▪ Core data structures and algorithms that underlie most software

▪ How to analyze algorithms

❖ About 30% is programming with multiple executors
▪ Parallelism: Use multiple executors to finish sooner

▪ Concurrency: Correct access to shared resources

▪ Will make many connections to the classic data structures material

9

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

In Other Words …

❖ This is the class where you begin to think like a computer
scientist

▪ You stop thinking in Java code

▪ You start thinking that this is a hashtable problem, a stack problem, a
sorting problem, etc.

▪ You recognize and make informed tradeoffs
• Time vs. space

• One operation more efficient if another less efficient

• Generality vs. simplicity vs. performance

❖ We are filling your “toolbox” with tools (data structures and
algorithms) and a methodology for selecting the right one
▪ Eg, logarithmic < linear < quadratic < exponential

10

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Lecture Outline

❖ Introduction: Why This Course?

❖ About This Course

▪ Learning Objectives

▪ People

▪ Policies

❖ Abstract and Concrete Data Types

❖ List, Stack, and Queue ADTs

11

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Introductions: Course Staff

❖ Hannah C. Tang

▪ UW CSE alumna with 17 years of bugs in industry

❖ TAs:

▪ Aayushi, Aashna, Frederick, Hamsa, Khushi, Kris, Logan, Nachiket,
Patrick, Richard, Winston

▪ Available in section, office hours, and discussion group

▪ An invaluable source of information and help (!!)

❖ Get to know us
▪ We are excited to help you succeed!

▪ Schedule time for a virtual one-on-one to discuss anything

12

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Introduction: Students

❖ ~120 students registered,
scattered all around the world

▪ When we’re online only, it’s easy
to feel lost, as if everyone is
“better” than you

❖ “Nearly 70% of individuals will
experience signs and
symptoms of impostor
phenomenon at least once in
their life.”
▪ https://en.wikipedia.org/wiki/Impost

or_syndrome

❖ Our course size can be an asset!
13

https://xkcd.com/1954

https://en.wikipedia.org/wiki/Impostor_syndrome

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Lecture Outline

❖ Introduction: Why This Course?

❖ About This Course

▪ Learning Objectives

▪ People

▪ Policies

❖ Abstract and Concrete Data Types

❖ List, Stack, and Queue ADTs

14

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Communication

❖ Website: http://cs.uw.edu/332

▪ Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/4898/discussion/
▪ Announcements made here

▪ Ask and answer questions – staff will monitor and contribute

❖ Office hours: spread throughout the week

▪ Can e-mail or private Ed post to make individual appointments

❖ Feedback:

▪ Anonymous feedback goes to Hannah, but she can’t respond directly

▪ cse332-staff@cs goes to the entire staff
15

http://cs.uw.edu/332
https://edstem.org/us/courses/4898/discussion/

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Course Components

❖ Lectures
▪ Introduces the concepts (but rarely covers coding details)

▪ Please take notes!!! Slides posted after class

▪ (Hopefully) recorded

❖ Sections
▪ Practice problems and concept application

▪ Review materials (occasionally introduces new materials)

▪ Answer Java/project/homework questions

❖ Office Hours
▪ Use them!

16

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Materials

❖ Textbook:

▪ Data Structures & Algorithm Analysis in Java, Mark Allen Weiss

▪ 3rd edition, 2012 (but 2nd edition ok)

❖ Parallelism/concurrency units in separate free resources
specifically designed for 332

17

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Evaluation

❖ ~3 partner-based multi-phase programming projects (50%)
▪ Use Java, IntelliJ, Gitlab

▪ Three “signature” programming projects plus a collection of smaller
parallelism exercises we consider as a “half project”

❖ No midterm or final exam!!! (40%)

▪ Instead, we will have 4 bi-weekly quizzes

▪ Released on Tuesday(ish), due on Thursday morning

▪ Open book, small-group collaboration allowed. But no staff support
(eg, message board or office hours)

❖ “Participation” (10%)

▪ Gradescope activities

▪ “90% is 100%” 18

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Deadlines and Student Conduct

❖ Late policies

▪ Projects: Non-linear penalty, no submissions accepted after 48h

❖ Academic Conduct (read the full policy on the web)

▪ In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either

▪ This does not mean suffer in silence!

• Learn from the course staff and peers, talk, share ideas; but don’t share or
copy work that is supposed to be yours

• Collaboration is strongly encouraged! Discuss confusing points with each
other, because organizing your thoughts is the best way to learn!

19

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Lecture Outline

❖ Introduction: Why This Course?

❖ About This Course

▪ Learning Objectives

▪ People

▪ Policies

❖ Abstract and Concrete Data Types

❖ List, Stack, and Queue ADTs

20

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Terminology: Data Structures vs Algorithms

❖ Data Structures:

▪ A way of organizing, storing, accessing, and updating a set of data

▪ Examples from 14X: arrays, linked lists, stacks, queues, trees

❖ Algorithms:

▪ A series of precise instructions guaranteed to produce a certain
answer

▪ Examples from 14X: binary search, merge sort, recursive
backtracking

21

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Terminology: Data Structures vs ADTs

❖ Data Structures:

▪ A way of organizing, storing, accessing, and updating a set of data

❖ Abstract Data Types (ADTs):

▪ Mathematical description of a “thing” and its set of operations

❖ Implementations:

▪ An implementation of an ADT is a data structure

▪ An implementation of a data structure are the collection of methods
and variables in a specific language

22

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Intuitively: Data Structures vs ADTs (1 of 2)

❖ Remember Our Potluck?

▪ “Give a (very specific) example of a pie or main course”

❖ The ADTs and data structures you’ll learn are a cookbook

▪ ADTs are the chapters/categories: Soups, Salads, Cookies, Cakes, etc

• High-level descriptions of a category of functionality

• You don’t serve a soup when guests expect a cookie!

▪ Data structures are the recipes: chocolate chip cookies,
snickerdoodles, etc

• Step-by-step, concrete descriptions of an item with specific characteristics

• Understand your tradeoffs before replacing carrot cake with a wedding cake

❖ Anyone have a pie that could serve as a main course?

23

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Intuitively: Data Structures vs ADTs (2 of 2)

❖ The ADTs and data structures you’ll learn are a cookbook

▪ ADTs are the chapters/categories: Soups, Salads, Cookies, Cakes, etc

▪ Data structures are the recipes: chocolate chip cookies,

❖ When you go out into the world …

▪ Determine which category is required

▪ Choose the specific recipe that best fits the situation

24

Learn how to analyze tradeoffs and

pick “the right tool for the job”

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Lecture Outline

❖ Introduction: Why This Course?

❖ About This Course

▪ Learning Objectives

▪ People

▪ Policies

❖ Abstract and Concrete Data Types

❖ List, Stack, and Queue ADTs

26

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

List Functionality

❖ Possible Implementations:

▪ ArrayList

▪ LinkedList

27

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index

• A list has a size defined as the

number of elements in the list

• Elements can be added to the

front, back, or any index in the list

• Optionally, elements can be

removed from the front, back, or

any index in the list

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

List Performance Tradeoffs

28

ArrayList LinkedList

addFront linear constant

removeFront linear constant

addBack constant* linear

removeBack constant linear

get(idx) const linear

put(idx) linear linear

* constant for most invocations

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Stack and Queue ADTs

29

Queue ADT. A collection storing an

ordered sequence of elements.

• A queue has a size defined as the

number of elements in the queue

• Elements can only be added to

one end and removed from the

other (“FIFO”)

Stack ADT. A collection storing an

ordered sequence of elements.

• A stack has a size defined as the

number of elements in the stack

• Elements can only be added and

removed from the top (“LIFO”)

CSE332, Spring 2021

gradescope.com/courses/256241

L01: Intro; ADTs; Lists, Stacks, and Queues

30

❖ Just like we did with our potluck example, give real-life examples of
each ADT:

▪ List

▪ Stack

▪ Queue

❖ Please choose examples that are not software related

▪ Eg: an escalator is an example of a Queue ADT

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Stack ADT

❖ Stack: an ADT representing an ordered sequence of elements
whose elements can only be added/removed from one end.

▪ Corollary: has “last in, first out” semantics (LIFO)

▪ The end of the stack that we operate on is called the “top”

▪ Operations:
• void push(Item i)

• Item pop()

• Item top()/peek()

• boolean isEmpty()

• (notably, there is no generic get() method)

31

A

B
C
D
E

D C B A

E

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Stack ADT: Details

❖ The Stack ADT has the following operations:
▪ push: adds an item

▪ pop: raises an error if isEmpty(), else removes and returns most-
recently pushed item not yet returned by a pop()

▪ top or peek: same as pop, but doesn’t remove the item

▪ isEmpty: initially true, later true if there have been same number of

pop()’s as push()es’es

❖ A Stack data structure could use a linked-list or an array or
something else.

▪ There are associated algorithms for each operation

❖ One implementation is in the library java.util.Stack

32

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues33

Stack ADT: Applications

❖ The Stack ADT is a useful abstraction because:

▪ It arises all the time in programming (see Weiss for more)
• Recursive function calls

• Balancing symbols (parentheses)

• Evaluating postfix notation: 3 4 + 5 *

• Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

❖ We can communicate in shorthand and high-level terms
▪ “Use a stack and push numbers”

▪ Rather than: “create a linked list and add a node when you see a …”

33

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Stack Data Structure: Array

❖ State
Item[] data;

int size;

❖ Behavior

▪ push()

▪ Resize data array if necessary

▪ Assign data[size] = item

▪ Increment size

▪ Note: this is ArrayList.addBack()

▪ pop()

• Return data[size]

• Decrement size

• Note: this is ArrayList.removeBack()

34

0 1 2 3
push

pop

C E

size 2

push(‘C’);

push(‘D’);

pop(); // ‘D’

push(‘E’);

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Stack Data Structure: (Singly) Linked List

❖ State
Node top;

❖ Behavior

▪ push()

▪ Create a new node linked to top’s current
value

▪ Update top to new node

▪ Increment size

▪ Note: this is LinkedList.addBack()

▪ pop()

• Return top’s item

• Update top

• Decrement size

• Note: this is LinkedList.removeBack()
35

push

pop

size

C

2top

E

push(‘C’);

push(‘D’);

pop(); // ‘D’

push(‘E’);

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Queue ADT

❖ Queue: an ADT representing an ordered sequence of elements,
whose elements can only be added to one end and removed
from the other end.

▪ Corollary: has “first in, first out” semantics (FIFO)

▪ Two methods:
• void enqueue(Item i)

• Item dequeue()

• boolean isEmpty()

• (notably, there is no generic get() method)

36

F E D C Benqueue dequeueG A

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Queue Data Structure: Simple Array

37

0 1 2 3

D E

enqueue

dequeue

❖ State
Item[] data;

int size;

❖ Behavior

▪ enqueue()

▪ ArrayList.addBack()

▪ dequeue()

▪ ArrayList.removeFront()

enqueue(‘C’);

enqueue(‘D’);

dequeue(); // ‘C’

enqueue(‘E’);

size 2What else

happens during

the removal?

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Queue Data Structure: Circular Array

❖ The front of the queue does not
need to be the front of the array!

▪ This data structure is also known as a
circular array

▪ Removing items increments front

▪ Adding items increments back

▪ back “wraps around” to the front of
the array if there’s capacity

❖ No longer need to shift elements
down during dequeue()s

38

enqueue(‘C’);

enqueue(‘D’);

dequeue(); // ‘C’

enqueue(‘E’);

0 1 2 3

C D E

enqueue

dequeue
front 1

back 3

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Queue Data Structure: (Singly) Linked List

39

enqueue

dequeue

qback

DE

❖ State
Node qback; // front of

// list is the

// logical back

// of the queue

❖ Behavior

▪ enqueue()

▪ LinkedList.addFirst()

▪ dequeue()

▪ LinkedList.removeLast()

How does our linked list know

where the last element is?

enqueue(‘C’);

enqueue(‘D’);

dequeue(); // ‘C’

enqueue(‘E’);

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Queue Data Structure: Doubly Linked List

❖ What if we:

▪ made the list doubly-linked

▪ added a pointer representing
the front of the queue

40

enqueue

dequeue

qback

qfront

E D

enqueue(‘C’);

enqueue(‘D’);

dequeue(); // ‘C’

enqueue(‘E’);

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Summary (1 of 2)

❖ Definitions

▪ Data Structures: A way of organizing, storing, accessing, and
updating a set of data

▪ Algorithms: A series of precise instructions guaranteed to produce a
certain answer

▪ Abstract Data Types (ADTs): Mathematical description of a “thing”
and its set of operations

41

CSE332, Spring 2021L01: Intro; ADTs; Lists, Stacks, and Queues

Summary (2 of 2)

42

List ADT. A collection storing

an ordered

sequence of

elements

• Each element is accessible

by a zero-based index

• A list has a size defined as

the number of elements

in the list

• Elements can be added to

the front, back, or any

index in the list

• Optionally, elements can

be removed from the

front, back, or any index

in the list

Queue ADT. A collection

storing an ordered

sequence of elements.

• A queue has a size

defined as the number

of elements in the

queue

• Elements can only be

added to one end and

removed from the

other (“FIFO”)

Stack ADT. A collection

storing an ordered

sequence of elements.

• A stack has a size

defined as the number

of elements in the

stack

• Elements can only be

added and removed

from the top (“LIFO”)

