CSE 332: Data Structures and Parallelism Spring 2021
Setting Up Your CSE 332 Environment

This document guides you through setting up IntelliJ for CSE 332 in various parts. If you run into any problems
or questions when setting up or using any of these plug-ins, feel free to ask on Piazza or during office hours!

» Part 1: Downloading Tools

» Part 2: Setting Up Gitlab

= Part 3: Running Tests

= Part 4: Submitting Projects and using Git

» Part 5: Using FlooBits for Peer Programing (optional)

Part 1: Downloading Tools
The first thing you should do is download the tools needed to work locally.
Note: Skip any steps if you already have the tool downloaded
(1) Download Oracle’'s JDK from the Java SE Downloads web site. Don’t download the JRE (Java Runtime
Environment), which lets you run Java programs, but does not provide the tools for Java development.
We recommend downloading Java 12 because it does not require an Oracle account to download, although
Java 11 and possibly Java 13 will work fine too if you have those versions already downloaded.

(2) Download Git
(3) Download IntelliJ

» As a student, you can get a free education account and can download either version of IntelliJ IDEA
for free

Part 2: Setting Up GitLab

We will be using gitlab.cs.washington.edu to submit homeworks and give feedback. gitlab is a web-based
git hosting service which is similar to github but hosted locally by the CSE Department. You will need to
learn basic git to be able to work on and submit your homework.

Generating a SSH key
The first time you clone from gitlab, you will need to create an SSH key. To do this, follow these steps:

(1) Open a Terminal on Linux or macOS, or Git Bash / WSL on Windows.
(2) Run the following command with your UW netID.

= ssh-keygen -o -trsa -b4096 -C "yourUWnetID"

(3) Next, you will be prompted to input a file path to save your SSH key pair to. If you don't already have
an SSH key pair and aren't generating a deploy key, use the suggested path by pressing Enter. Using
the suggested path will normally allow your SSH client to automatically use the SSH key pair with no
additional configuration.

(4) Once the path is decided, you will be prompted to input a password to secure your new SSH key pair.
It's a best practice to use a password, but it's not required and you can skip creating it by pressing Enter
twice.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://git-scm.com/downloads
https://www.jetbrains.com/idea/
gitlab.cs.washington.edu

Adding SSH to your GitLab account
The first time you clone from gitlab, you will need to create an SSH key. To do this, follow these steps:

(1) Open a terminal on Linux or macOS, or Git Bash / WSL on Windows.

» macOS: pbcopy < ~/.ssh/id_rsa.pub
» Linux: xclip -selclip < ~/.ssh/id_rsa.pub
= Bash on Window: cat ~/.ssh/id_rsa.pub

(2) Add your public SSH key to your GitLab account by clicking your avatar in the upper right corner and
selecting Settings. From there on, navigate to SSH Keys and paste your public key in the Key section.
Your UW netlD should appear under Title. If not, give your key an identifiable title like Work Laptop or

Home Workstation. Make sure your key does not end in a blank line and click Add key.

(3) Run ssh -T git@gitlab.cs.washington.edu to ensure that your key is correctly setup. You should

receive a welcome message and should not be prompted for a password.

Creating The IntelliJ IDEA Project

Each project in the course will have its own project in IntelliJ. We will create the project in IntelliJ by cloning a

git repository on gitlab which contains the starter code. To do this, follow these steps:

(1) If no project is currently opened, choose Checkout from Version Control | Git on the Welcome screen.

Otherwise, from the main menu, choose VCS | Checkout from Version Control | Git.

(2) In the Clone Repository dialog, specify the URL of the remote repository you want to clone (you can click

Test to make sure that connection to the remote can be established).
git@gitlab.cs.washington.edu:cse332-19au/pl-animal.git

A bold phrase in the repository path means you should substitute it with your equivalent. Do not forget

the .git at the end!

(3) In the Directory field, specify the path where the folder for your local Git repository will be created into

which the remote repository will be cloned.

(4) Click Clone and click Yes in the confirmation dialog.

= A pop-up may appear asking you to open the project after check-out, click Yes to open the project.

= Another pop-up may appear notifying you that the SDK is not set-up or configured, click Yes and

the SDK will be set up later.

(5) Open any java class in pl-animal | src

(6) If the java class has a lot of red underlining the code, you have to set up the SDK. A pop-up may appear
notifying you that "Module SDK is not defined". Click Setup SDK, choose whatever version of Java you

are using as long as it is Java version 11 or above, and then click Yes.

Part 3: Running Tests in IntelliJ

Here are a few ways to run your tests in IntelliJ.

git@gitlab.cs.washington.edu:cse332-
.git

package tests.gitlab.ckptl;

import cse332, interfaces.worklists.PriorityWorkList;
import datastructures.worklists.MinFourHeap;

import java.util.¥;

public class MinFourHeapTests extends WorklistGradingTests {
private static Random RAND;

public static void main(String[] args) { new MinFourHeapTests().run();

@verride
of protected void run() {
e super. run();|
test(method: “testHeapWith5Items");
test(method: “testHugeHeap");
test(method: "testOrderingDoesNotMatter");
test(method: “testWithCustomConparable”);
finish();

public static void init() {
STUDENT_STR = new MinFourHeap<>();
STUDENT_DOUBLE = new MinFourHeap<>();
STUDENT_INT = new MinFourHeap<>();
RAND = new Random(seed: 42);

}

public static int testieapWith5Itens() {
PriorityWorkList<String> heap = new MinFourHeap<>();
String[] tests = { "a", "b", "c", "d", "e" };
for (int i = 0; 5; ir+) {
1 nans

heap.add(str);

boolean passed = true;
ar (int i = 00 i< 50 das) L
MinFourHeapTests > run()

= Click the green arrow near the line numbers and main method
» Right Click the Test File name and select "Run TestFile.main()"

= Click Add Configuration on the upper left side corner. In the "Run Configuration" Pop-up, click the +
button and select Application.

[JoX) Choose Main Class
Search by Name | Project

Include non-project items

Q|
ArrayStackTests (tests.gitlab.ckptl) cse332-p1 g
€ % CircularArrayFIFOQueueTests (tests.gitlab.ckptl) 332-p1 g

@ w DueDateTests (tests.gitlab.duedate)

@ % HashTrieMapTests (tests.gitlab.duedate)
€ ListFIFOQueueTests (tests.gitlab.ckptl)
€ % MinFourHeapTests (tests.gitlab.ckptl)

a
ol

TrieTest (main)

€ w CkptlTests (tests.gitlab.ckptl) 332-p1 g
;
;
:
:
;
>
;

© Zip (main)

cancel | [CISNN

Specify the main class as the test file you want to run. You can click ... on the right side to select from
all the test file options.

Part 4: Submitting Projects and using Git
git is the version control system (VCS) underlying gitlab. Most real projects are kept in a VCS to avoid
losing data, and for the ability to easily revert code back to older versions. Another major reason VCS's are
important is that they allow you to effectively work together with other people. They allow you to combine
(“merge") several different versions of your codebase together.

IntellilJ gitlab Partner's Computer

UN- Push
/COMMITTED

Commit
Hwwo)

As shown in the diagram, there are several major actions you can do with respect to your git repository:

= Commit: A “commit” is a set of changes that go together. By “committing” a file, you are asking git to
“mark” that it has changed. git requires that you give a message summarizing the effect of your changes.
An example commit message might be “Add error handling for the empty queue case in ListFIFOQueue”.

» Push: A “push” sends your commits to another version of the repository (in our case, this will almost
always be gitlab). If you do not push your commits, nobody else can see them!

= Pull: A “pull” gets non-local commits and updates your version of the repository with them. If you and
someone else both edited a file, git will ask you to explain how to merge the changes together (this
process is called “resolving a merge conflict”).

Using Git in IntelliJ
IntelliJ provides a GUI for all of the git operations. We now explain how to handle a git workflow in IntelliJ.

Committing and Pushing

After making changes to, adding, or removing files, you must commit and "push" your changes to git. This
step will cause git to record your changes to the repository, so that your changes are backed-up and available
to other people working on the repository, or to you when working on a different computer system.

(1) Click the green checkpoint in the upper right corner or in the main menu VCS | Commit

Commit Changes:

I I Changelist: Default Changelist Git

Author:
Unversioned Files Amen

Sign-

Extra commit for java > kt renames

Before Commit
Reformat code
B master 1 modified Rearrange code
@i o Optimize imports
Perform code analysis
Check TODO (Show All) Configure
Cleanup

Update copyright

~ iff
vz > Side-by-sideviewer v | Domotignore v | Highightwouds ~ [[ifl (&) % » 1 difference
8 99a436cf0ade7f130be1ce0fObbda23daazboedd Your version
“ blah blah v
blah blah
blah &
blah
blah
testina for 332
[l commit - |
Commit and Push... %K

Create Patch.

(2) Select all the files to commit (all the files you changed should be selected by default) and add an appropriate
commit message.

(3) Press the down arrow next to the "Commit" button, and select Commit and Push

(4) Note if you accidentally press the "Commit" button, push manually by going to VCS | Git | Push

Do NOT commit the .idea folder. This will cause issues for your partner down the line.

Pulling
There are two reasons to pull: (1) you want to get the changes your partner made, or (2) you want to push
your changes, but they were rejected because of a conflict.

(1) To pull in IntelliJ, from the main menu, choose VCS | Update Project or click on the blue arrow on
the upper right side corner.

o ® Update Project
Update Type Clean working tree before update
° Merge ° Using Stash
Rebase Using Shelve
Branch Default
? Do not show this dialog in the future Cancel “

(2) The following window should appear. The default selections should be Merge and Using Stash, if not,
change "Update Type" and "Clean working tree before update” to them respectively.

The result will either indicate that you pulled cleanly or that there is a merge conflict. If you have a

merge conflict, then a conflict pop-up will appear, which means you have uncommitted local changes
which conflict with changes on gitlab. Refer to the next section, Merging a Conflict.

Merging a Conflict

If you have any items that have a conflict and you select the Merge... option, there are two ways to resolve the
conflict: (1) Use the merge tool that appears (2) Exit out of the merge tool and resolve the conflicts manually

(1) Using the merge tool

[XoX) Conflicts

Uncommitted changes that were saved before Update have conflicts with files from
Remote

Name Yours (master) | Theirs Accept Yours
£ testing_merge ~/git/myovate Deleted Modified
Accept Theirs

Group files by directory

Close

= If you want to use your version of the file, select Accept Yours.
= If you want to use your partner’s version on the file, select Accept Theirs.

= If you want to merge your version and your partner’s version of the file, select Merge.... The merge
tool should appear. Refer to the IntelliJ Help to resolve the conflict using the merge tool.

(2) Resolving the conflict manually

When git detects a file conflict, it changes the file to include both versions of any conflicting potions in
this format:

<<<<<<L< filename
YOUR VERSION

REPOSITORY'S VERSION

>>>>>>> 4e2b407... -- repository version's revision number

https://www.jetbrains.com/help/idea/resolve-conflicts.html?section=Windows%20or%20Linux

Each conflicting file will be colored in Red. For each conflicting file, edit it to choose one of the versions
(or to merge them by hand). Be sure to remove the <<<<<<<, =======, and >>>>>>> lines.
(Searching for << < until you've resolved all the conflicts is generally a good idea.)

Don't forget to commit and push these changes as you normally would once you have made these edits, so
that you can tell git that you have resolved the conflicts. Note that if there are still conflicting parts of the file
(<<<<<<<, =======, and >>>>>>> lines still remaining), the commit will fail.

Revert a commit
(1) Open the Version Control tool window at the bottom left corner

(2) Select the Log tab

Version Control: Local Changes ~ Log Console Update Info: 2019-05-16 23:09 ~
-3 All+ Al All': Al 2 Z 1t & a2 Q 4 5oEO
& Copy Revision Number

Update testing_merge d Create Patch

Update testing_merge Compare Versions
Compare with Local

Add new file & Cherry-Pick

lol &
|

e

% origin & master Annie Mao 2019-05-16 23:08 myovate
Annie Mao 2019-05-16 23:07 B testing_merge

Annie Mao 2019-05-16 21:55

Checkout Revision

Browse Repository at Revision
New Branch...

New Tag...

O Reset Current Branch to Here... Update testing merge

Revert
Undo Commit... 21:56

Annie Mao i . i .edu> on 2019-05-16 at

5. Z:Structure % 2: Favorites

4 9: Version Control Terminal ~ iE 6: TODO Reword F2 € Event Log

[0 1File Updated // View (13 minutes ago) Interactively Rebase from Here. M5 LFs UTF-8¢ dspaces s Git:master: W &

(3) Locate the commit you want to revert, right click, and select Revert
(4) Select the files you want to revert, and deselect the files you do not want to revert

(5) Press the down arrow next to the "Commit" button, and select Commit and Push

Reset a Branch to a Specific Commit
(1) Open the Version Control tool window at the bottom left corner
(2) Select the Log tab

(3) Locate the commit you want to revert, right click, and select Reset Current Branch to Here

(4) In the Git Reset dialog that opens, select Mixed and the index to be updated and click Reset.

Submitting Your Final Version
In some courses, you are asked to "tag" your final commit. We will not ask you to do this. The last commit
you make within the deadline will be the one we grade.

Part 5: Peer Programming using FlooBits (Optional)

FlooBits is a real time collaborative editing plug-in for IntelliJ, so that multiple users can simultaneously edit the
same project remotely. Installing FlooBits is OPTIONAL. If you and your partner prefer to meet in person for
peer programming or an alternative method for collaboration, you do not have to install FlooBits. This guide
will help you get started with FlooBits and using it to peer program with your CSE 332 project partner.

(1) Installing Floobits
(1) On Windows, go to Settings | Plug-ins, on Mac, go to Preferences | Plug-ins

2

)
(2) Search for FlooBits and install the Plug-in. Researt IntelliJ when finished.

(3) After IntelliJ restarts, a pop-up should appear and select Create a FlooBits Account
(4)

4) Use your UW email to create a FlooBits account. Make sure to select the "Free" Plan.

(5) Verify your UW email to receive 3 private workspaces for free. One for each project!

Only ONE partner should upload the project.

https://floobits.com/edu

(2) Uploading your Project
(1) From the main menu, choose Tools | Floobits | Share Project Privately

(2) Select Upload Entire Project

(3) Share the FlooBits URL of your project to your partner- it should be https://floobits.com /username/projectname
Note the text in bold should be different

(4) Log into FlooBits in your browser, go to your project, and then Permissions

(5) Add your partner to permissions using their FlooBits username

(3) Joining your Project
(1) From the main menu, choose Tools | Floobits | Join Workspace by URL

(2) Use the FlooBits URL that your partner shared

4) Tips for working in FlooBits
g
(1) You can follow your partners changes by clicking on the eyeball in the bottom left

(2) Both users can make code changes but only the owner of the workspace can use Git to commit and push

(3) Again, do NOT commit the .idea folder to GitLab. This will cause issues for your partner later on.

	Installing Floobits
	Uploading your Project
	Joining your Project
	Tips for working in FlooBits

