• Overall Asymptotic Runtime Bound for dup1

$$R_{\text{best}}(N) = 2$$
$$R_{\text{worst}}(N) = \frac{N^2 + 3N + 2}{2}$$

2

Give an **overall** asymptotic runtime bound for R as a combination of Θ , Θ , and/or Ω notation. Take into account both the best and the worst case runtimes (R_{best} and R_{worst}).

Then, give a few other valid runtime bounds for $\rm R_{best}$, $\rm R_{worst}$, and R using asymptotic notation.

Q1: Give an overall asymptotic runtime bound for R as a combination of Θ , \mathbf{O} , and/or Ω notation. Take into account both the best and the worst case runtimes (R_{best} and R_{worst}).

Q Mystery

₩

2

Give a tight asymptotic runtime bound for mystery as a function of N, the length of the array, in the best case, worst case, and overall.

```
boolean mystery(int[] a, int target) {
    int N = a.length;
    for (int i = 0; i < N; i += 1)
        if (a[i] == target)
            return true;
    return false;
}</pre>
```

Q1: Give a tight asymptotic runtime bound for mystery as a function of N, the length of the array, in the best case, worst case, and overall.

Q2: Then, give a few other valid runtime bounds for R_{best} , R_{worst} , and R using asymptotic notation.

Repeat After Me...

There is no magic shortcut for these problems (except in a few well-behaved cases). Know these two summations since they're common patterns.

Real world programs are often messy and difficult to model.

?: What's different between these two summations?

?: How did we apply these strategies to analyze printParty?

 \ref{scalar} : What happens when N is less than 10000? What happens when N is greater than 10000?

?: What is the asymptotic variable in this problem?

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your answer should be simple with no unnecessary leading constants or summations.

Q Runtime: f	1	
	<pre>public static void f1(int N) { for (int i = 1; i < N; i *= i) System.out.println("hello"); for (int i = 1; i < N; i *= 2) System.out.println("hiya"); for (int i = 1; i < N; i += 1) System.out.println("hi"); }</pre>	
		11

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your answer should be simple with no unnecessary leading constants or summations.

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your answer should be simple with no unnecessary leading constants or summations.

• Runtime: f	3	
	<pre>static void f3(int N) { for (int x = 0; x < N; x += 1) {</pre>	
	<pre>int i = N / 2; while (i != x)</pre>	
	if (i > x) i -= 1;	
	else i += 1:	
	} }	
		15

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your answer should be simple with no unnecessary leading constants or summations.