
Overall Asymptotic Runtime Bound for dup1

Give an overall asymptotic runtime bound for R as a combination of Θ, O, and/or Ω notation. 
Take into account both the best and the worst case runtimes (Rbest and Rworst).

Then, give a few other valid runtime bounds for Rbest , Rworst , and R using asymptotic 
notation. 2

Q

Q1: Give an overall asymptotic runtime bound for R as a combination of Θ, O, and/or 
Ω notation. Take into account both the best and the worst case runtimes (Rbest and 
Rworst).

Q2: Then, give a few other valid runtime bounds for Rbest , Rworst , and R using 
asymptotic notation.

Mystery

Give a tight asymptotic runtime bound for mystery as a function of N, the length of the array, 
in the best case, worst case, and overall.

5

Q

boolean mystery(int[] a, int target) {

    int N = a.length;

    for (int i = 0; i < N; i += 1)

        if (a[i] == target)

            return true;

    return false;

}

Q1: Give a tight asymptotic runtime bound for mystery as a function of N, the length of 
the array, in the best case, worst case, and overall.



Comprehending. Understanding the 
implementation details of a program.

Modeling. Counting the number of steps 
in terms of N, the size of the input.

Case Analysis. How certain conditions 
affect the program execution.

Asymptotic Analysis. Describing what 
happens for very large N, as N→∞.

Formalizing. Summarizing the final result 
in precise English or math notation.

Runtime Analysis Process

7

boolean dup1(int[] A)

Consider every pair

Array contains a 
duplicate at front

Array contains no 
duplicate items

Constant time Quadratic time

Best: Θ(1) Worst: Θ(N2)

Overall: Ω(1) and O(N2)

Worst caseBest case

Repeat After Me…

There is no magic shortcut for these problems (except in a few well-behaved cases).

Know these two summations since they’re common patterns.

Strategies.

1. Find the exact count of steps.

2. Write out examples.

3. Use a geometric argument–visualizations!

8
Numerical Linear Algebra (Lloyed N. Trefethen, David Bau, III/SIAM)

Real world programs are often messy and difficult to model.

?: What’s different between these two summations?

?: How did we apply these strategies to analyze printParty?



9

Runtime: f0

static void f0(int N) {

    if (N < 10000)

        for (int i = 0; i < N * N; i += 1)

            System.out.println("hello");

    else

        System.out.println(N * N * N);

}

Q

?: What happens when N is less than 10000? What happens when N is greater than 
10000?

?: What is the asymptotic variable in this problem?

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your 
answer should be simple with no unnecessary leading constants or summations.

11

Runtime: f1

public static void f1(int N) {

    for (int i = 1; i < N; i *= i)

        System.out.println("hello");

    for (int i = 1; i < N; i *= 2)

        System.out.println("hiya");

    for (int i = 1; i < N; i += 1)

        System.out.println("hi");

}

Q

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your 
answer should be simple with no unnecessary leading constants or summations.



13

Runtime: f2

static void f2(int N) {

    for (int i = 0; i < N; i += 1) {

        // Math.pow takes constant time

        int big = Math.pow(2, i + 1) - 1;

        for (int j = 0; j < big; j += 1)

            System.out.println("hello");

    }

}

Q

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your 
answer should be simple with no unnecessary leading constants or summations.

15

Runtime: f3

static void f3(int N) {

    for (int x = 0; x < N; x += 1) {

        int i = N / 2;

        while (i != x)

            if (i > x)

                i -= 1;

            else

                i += 1;

    } }

Q

Q1: Give the order of growth of the runtime in Θ notation as a function of N. Your 
answer should be simple with no unnecessary leading constants or summations.


