
3

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

ArrayQueue maintains certain invariants.
Unexpected result after add and remove.

A bug exists in the ArrayQueue isEmpty
method.

Information ???

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

1

2

3

4

A good hypothesis identifies the cause of failure separate from where and when the program
actually fails. The state of the ArrayQueue determines the behavior of isEmpty.

Item[] data

int size

int front

int back

State

A bug exists in the ArrayQueue isEmpty
method.

Information ???

2

3

5

A good hypothesis identifies the cause of failure separate from where and when the program
actually fails. The state of the ArrayQueue determines the behavior of isEmpty.

The hypothesis on the left suggests more about the problem than the one on the right.

A bug exists in the ArrayQueue isEmpty
method.

The size variable is not set correctly,
causing isEmpty to return false.

?: What is it about the hypothesis on the left that suggests more about the problem?

6

ArrayQueue1<String> queue = new ArrayQueue1<>();

queue.add("a");

queue.remove();

queue.add("big");

queue.remove();

queue.remove();

queue.add("car");

queue.remove();

System.out.println(

 "isEmpty() expected true, got " + queue.isEmpty());

A good hypothesis describes a problem and is both testable and falsifiable.

Q1: Propose a new hypothesis from the test code.

8

Debugging is about integrating various different sources of information to identify the
source of an error.

- Trying new inputs.
- Writing a unit test to reproduce the bug.
- Explaining to yourself the behavior of each line of code.
- Searching online to understand what error messages mean.
- Changing or removing code.
- Poking at memory values with a debugger or print statements.

?: Bugs often appear away from their root causes. How does each information
gathering method help us learn more about the problem?

9

How are bugs fixed? Here’s one proposal.

• Productive changes fix bugs.

• Information gathered about the
system informs productive changes.

• A hypothesis guides information
gathering and testing.

• Things we know about the problem
inform how we choose hypotheses.

ArrayQueue maintains certain invariants.
Unexpected result after add and remove.

The remove method decrements the size
variable even when the queue is empty.

Modify the remove method to handle the
special case of removing if empty.

The point here is that information is the
most important thing and you need to do
whatever’s necessary to get information.

1

2

3

?: What are the differences between this new hypothesis and the hypothesis that we
started with? How did we get from the starting hypothesis to this new hypothesis?

Give an invariant for ArrayQueue2.front.

11

How did the program break the invariant?

A

correctness
efficiency

15

While testing software is not a major focus of this course, it’s an important tool for
analysis of algorithms.

There are three issues with using random testing.

1. Reproducibility. Seed the random number generator to get the same
sequence of “random” numbers each time.

2. Reference model. Random tests often need a reference implementation to
compare for correctness. It’s not always easy to come up with a reference.

3. Debuggability. Testing infrastructure is needed to aid in interpreting results.

Once we have a correct implementation, we can use the Stopwatch class to compute
the time between runs.

