Name: Evil Kevin
CSE 332 Winter 2020 QU.IZ 7 UW NetID: evilkevin

1 Minimum Spanning Tree

Consider this undirected graph, G, with 8 vertices and 11 weighted edges, for problems (a), (b),
and (d). Denote each edge with alphabetical overbar notation AB, which represents the edge
from A to B. For your convenience, the graph is printed twice.

?24@{7@ ?i“@{?@
& WNY & NY

(a) What are the edges on the cut between ABCE and DFGH? You may not need all blanks.
BD EF EG

(b) What is the minimum edge on the cut between ABE and the rest of G?7 BC

(c) True / False: Given any undirected graph, G, G will always have a unique MST.
For example, this graph has more than one MST:

3 ! 3 e 3 g 3
15t MST: e 3 e 2nd \[ST: ‘ ‘ 3rd MST: e 3 e

Note that, if all edge weights in G are distinct, MST of G will be unique by the cut property.

(d) List the edges in the order that they’re added to the MST by each algorithm. Assume ties
are broken in alphabetical order (i.e. the edge BD would be considered before BE). You
may not need all blanks.

Prim’s algorithm from A: AE AB BC BD DF EG GH

Using the cut property approach, the order of Prim’s algorithm starting from A comes from
these steps:

1) cut between A and BCDEFGH: (AB,3) (AC,6) (AE,2)
choose AE (Now, A and E are in the same component.)

Will you want to pick up your worksheet later? Circle one: Yes / No 1
How confident do you feel with the material this week? Circle one: 1 /2 /3 / 4

Name: Evil Kevin
CSE 332 Winter 2020 QU.IZ 7 UW NetID: evilkevin

2) cut between AE and BCDFGH: (AB,3) (AC,6) (BE,4) (EF,5) (EG,7)

choose AB

3) cut between ABE and CDFGH: (AC,6) (BC,3) (BD,4) (EF,5) (EG,7)
choose BC

4) cut between ABCE and DFGH: (BD, 4) (EF,5) (EG,7)
choose BD

5) cut between ABCDE and FGH: (DF, 1) (EF,5) (EG,7)
choose DF

6) cut between ABCDEF and GH: (EG,7) (FG,9)
choose EG

7) cut between ABCDEFG and H: (GH, 7)
choose GH

Kruskal’s algorithm: DF AE AB BC BD EG GH

(e) We are trying to find the MST of a graph where the edge weights only range between 0 and
255. One TA suggests that it is possible to find the MST in a time faster than O(|E|log|E]|).
Is this true? If so, briefly explain how this can be done. If not, briefly explain why.

It is possible by modifying Kruskal’s algorithm! In Kruskal’s, sorting edges takes the most
time, O(|E|log|E|). Since the edge weights only range between 0 and 255, we can have a
hash table with 256 buckets to store edges. Edge’s hashCode will just be the weight itself.
By using this approach, edge weights are sorted naturally in O(|E|). We can consider edges
bucket by bucket starting at bucket zero and so on.

For example, the hash table could look something like:

o] +
1| —+ (DF,1)
2| —+— (AE,2)
3| -+ (AB,3) — (BC,3)
4| s (BD4) —s (BEA
5 —+ (EF,5)

255 |

Will you want to pick up your worksheet later? Circle one: Yes / No 2

How confident do you feel with the material this week? Circle one: 1 /2 /3 / 4

Name: Evil Kevin
CSE 332 Winter 2020 QU.IZ 7 UW NetID: evilkevin

(f) (Optional) Give a scenario where Prim’s algorithm is more preferred than Kruskal’s algo-
rithm.

Prim’s algorithm runs in O(|V|log|V| + |E|log|V]) and Kruskal’s algorithm runs in
O(|E|log|E| + E - f(|V]|) + V - g(]V])) where f(|V]) is the runtime of isConnected and
g(|V]) is the runtime of connect from your choice of Union Find. For example, weighted
quick-union by size and weighted quick-union by height have O(log|V]) runtime for both
connect and isConnected. Kruskal’s will run slower in a dense graph where number of
edges is very large due to the sorting. In that case, Prim’s is more preferred than Kruskal’s.

Note: the optimal union find with path compression would run very fast (in amortized
O(a(n)) where a(n) < 5 for any value of n that can be written in this physical universe).
More information in Wikipedia.

Pseudocode for Kruskal’s algorithm:

Kruskal (Graph G):
initialize MST to be an empty edge list

sort G.edges() by weights \\ OCIE|1loglEl)
for each edge e(u, v, w) in G.edgesQ): \\ loop for |E| times
if isConnected(u, v) is true: \\ runs in f(|V])
continue; \\ because connecting u and v will cause a cycle
\\ at this point, u and v are in different components
connect (u, v) \\ runs in g(|V]|); called at most |V|-1 times
MST.add (e)
return MST
Note that, if MST.size() == G.vertices().size() - 1, in other word, number of edges
in the MST equals to |V| — 1, we can also break the loop because the MST is sucessfully
built.
Will you want to pick up your worksheet later? Circle one: Yes / No 3

How confident do you feel with the material this week? Circle one: 1 /2 /3 / 4

https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Time_complexity

Name: Evil Kevin
CSE 332 Winter 2020 QU.IZ 7 UW NetID: evilkevin

2 Single-Source & Single-Pair Shortest Path

(a) For the graph below, run Dijkstra’s algorithm to find single-source shortest paths from A
to every other vertices. You must show your work at every step and give the vertex order
visited by Dijkstra’s algorithm, assuming that we always visit alphabetically earlier vertex
first if there are multiple valid choices. The first step is provided for you.

Fringe:
Vertex | Priority Removed?
A 0 Yes
B o 2 Yes
C oo 43 Yes
D ool Yes
E oo 6 Yes
5 F oo M 11 Yes
Vertex | distTo edgeToVertex
A 0 —
B |02 AB
C |oo4d3 AC DC
Visiting order: D o0 1 AD
E o 6 CE
A D B C E F F |oocld1l |DFEBEF

(b) (Optional) Draw the shortest paths tree (SPT) resulting from the shortest paths found by
Dijkstra’s algorithm in problem 2(a).

OO
3

(c) Using the graph from problem 2(a), suppose we are trying to find a single-pair shortest
path from A to F. Specify your heuristic function for A* Search by circling any possible
numbers for h(F) that returns the wrong shortest paths tree.

h(A) =
h(B) = 10
h(C) =9
h(D) = 15
nME)y=-3 0 5 9 (11)
h(F) =0
Will you want to pick up your worksheet later? Circle one: Yes / No 4

How confident do you feel with the material this week? Circle one: 1 /2 /3 / 4

CSE 332 Winter 2020

Quiz 7

Name: Evil Kevin
UW NetID: evilkevin

Consider this state after exploring A, B and C respectively:

Fringe:

Vertex | Priority Removed?
A 0 Yes
B oo 12 Yes
C o 1312 Yes
D o 16
E | o064 h(E)
F 00

Vertex | distTo edgeToVertex
A 0 —
B | o002 AB
C |oo43 AC BC
D oo 1 AD
E |o06 CE
F 00

We know that we have to go to F from E to make the shortest path. Then, the priority value
of E must be lower than D at this point, so that we can pop E out from the fringe before
D. That means, to make the correct shortest paths tree, we need to have 6 + h(E) < 16

or h(E) < 10. Then, any value of A(E) > 10 will make A* Search resulting in the wrong
shortest paths tree.

Will you want to pick up your worksheet later? Circle one: Yes / No
How confident do you feel with the material this week? Circle one: 1 /2 /3 / 4

	Minimum Spanning Tree
	Single-Source & Single-Pair Shortest Path

