1 Algorithm Analysis

Some Useful Formulas:
\[1 + 2 + 3 + 4 + \ldots + N = \frac{N(N + 1)}{2} \]
\[1 + 2 + 4 + 8 + \ldots + 2^N = 2^N - 1 \]
\[2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^N = 2^{N+1} - 1 \]
\[a + ar + ar^2 + \ldots + ar^{n-1} = \sum_{i=1}^{n} ar^{i-1} = a \frac{1 - r^n}{1 - r} \]

Give the worst-case order of growth of the runtime in \(\Theta(\cdot) \) notation as a function of \(N \). Your answer should be simple with no unnecessary leading constants or summations.

(a) \(\Theta(N^{\underline{-}}) \)

```java
class Recursion {
    static int recursion(int N) {
        int x = 0;
        if (N < 1000) {
            for (int i = 0; i <= N * N * N; i++) {
                x++;
            }
            return x;
        }
        for (int i = 1; i <= N / 2; i++) {
            x++;
        }
        return x + 2 * recursion(N / 2);
    }
}
```

The base case \((N < 1,000) \) has a constant amount of work because \(N \) is relatively small (remember that we analyze the algorithm where \(N \) is very large). Hence, we have a recurrence like this:

\[
T(N) = \begin{cases}
c_0 & \text{if } N < 1,000 \\
T\left(\frac{N}{2}\right) + c_1 N & \text{otherwise}
\end{cases}
\]

Unrolling the recurrence gives us

\[
T(N) = T\left(\frac{N}{2}\right) + c_1 N
= T\left(\frac{N}{4}\right) + c_1 \frac{N}{2} + c_1 N
= T\left(\frac{N}{8}\right) + c_1 \frac{N}{4} + c_1 \frac{N}{2} + c_1 N
= \ldots
= T\left(\frac{N}{2^k}\right) + c_1 N \left(\frac{1}{2^{k-1}} + \ldots + \frac{1}{4} + \frac{1}{2} + 1\right)
= T(999) + c_1 N \left(1 - \frac{1}{2^k}\right)
= c_0 + 2c_1 N(1 - 2^{-k}) = c_0 + 2c_1 N \left(1 - \frac{999}{N}\right)
= c_0 + 2c_1 N - 1,998c_1 \in \Theta(N)
\]

Another approach to solve this problem is by drawing the recursion tree and find the total work done by every node in the tree.
2 Array Resizing

We implement Queue ADT using ArrayQueue3 that add and remove methods work as expected. However, when we try to add a new element into the full Queue, we will make a new array with size of size+1 and copy every element over.

(a) What are the valid runtime bound of add in each case? (choose ALL that apply)

Best case:
- ■ Ω(1)
- ■ Θ(1)
- ■ O(1)
- □ Ω(\log N)
- □ Θ(\log N)
- □ O(\log N)
- □ Ω(N)
- □ Θ(N)
- □ O(N)

Worst Case:
- ■ Ω(\log N)
- □ Θ(\log N)
- □ O(\log N)
- ■ Ω(N)
- □ Θ(N)
- □ O(N)
- □ Ω(N^2)
- □ Θ(N^2)
- □ O(N^2)

Overall:
- ■ Ω(1)
- □ Θ(1)
- □ O(1)
- □ Ω(\log N)
- □ Θ(\log N)
- □ O(\log N)
- □ Ω(N)
- □ Θ(N)
- □ O(N)
- □ Ω(N^2)
- □ Θ(N^2)
- □ O(N^2)

(b) If ArrayQueue3 starts empty with an array of size 4, give a sequence of 6 operations that would perform the worst runtime (e.g., add/remove/add/remove/add/remove is a sequence of operations):

add/add/add/add/add/add

(c) What could be improved on ArrayQueue3 to improve overall performances? (one sentence should be enough.)

Adding an element into the full queue will cost us Θ(N) run time. From 2(b), we can see that consecutive calls of add when queue is full will make the worst performance. Hence, we make a new array with size size*2 instead of size+1 when adding to the full queue.

(More in-depth explanation. Will not be tested)

Analyzing the overall performances of new add operation:

We will talk about the case where only add’s are called to demonstrate the worst case possible. Starting with an array of size 4, we know that the array will double its size when size = 4, 8, 16, 32, 64, ..., N (assuming N = 2^k). For any other size, add will perform in constant time because resizing is unnecessary. So, the major contribution to the time complexity is 4 + 8 + 16 + 32 + 64 + ... + N = \(2N - 1\) - 2 - 1 = 2N - 4. Therefore, the amortized cost of add is somewhat \(\frac{2N - 4}{N} = 2 - \frac{4}{N} \in \Theta(1)\). Note that, amortized analysis gives the average performance of the operation. That’s why we divide by N.
3 Algorithm Analysis (Optional)

(a) \(\Theta(N) \)

```java
static void addItUp(int N) {
    int x = 0;
    for (int i = 1; i <= N; i *= 2) {
        for (int j = 0; j < i; j++) {
            x++;
        }
        if (i % 2 == 1) {
            for (int j = 0; j < N; j++) {
                x++;
            }
        }
    }
    System.out.println(x);
}
```

Since values of \(i \) will be 1, 2, 4, 8, 16, ..., \(N \), we can see that \(i \% 2 == 1 \) is true only when \(i=1 \). Therefore, the for-loop inside if statement will only contribute \(c_1 N \) amount of work.

For the second for-loop, \(x++ \) will be executed for \(i \) times. Since \(i \) changes in each iteration, the worst-case runtime of this section can be modeled as \(c_2(1+2+4+8+...+N) = c_2(2N-1) \). Formally, we can model this section as \(\sum_{i=0}^{\log_2 N} \sum_{j=1}^{2^i} c_2 \) which simplifies to \(\sum_{i=0}^{\log_2 N} c_2 2^i = c_2(1+2+4+8+...+N) \).

Therefore, we can model the worst-case runtime of this whole algorithm as

\[
c_2(2N - 1) + c_1 N + c_0 \in \Theta(N)
\]

where \(c_0, c_1, c_2 \) are some constants.