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Announcements

❖ No quiz this week

▪ Future quizzes will have a deadline of 3am on Saturday

▪ Lecture Feedback: Pretty even split between Zoom, Google Docs, 
and PollEverywhere

❖ Ex 2,3 out today, due next Monday

▪ Ex 3 is widely considered the hardest, so start early

❖ Project 1 Checkpoint 1 tomorrow!

❖ Guest lecturer on Wednesday

pollev.com/332summer :: tinyurl.com/332-06-29A
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Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A
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Complexity Cases

❖ We started with two cases:

▪ Worst-case complexity: maximum number of steps algorithm takes 
on “most challenging” input of size N

▪ Best-case complexity: minimum number of steps algorithm takes on 
“easiest” input of size N

❖ We are punting on one case: Average-case complexity

▪ Sometimes: relies on distribution of inputs

• Eg, binary heap’s O(1) insert (we will get to this)

• See CSE312 and STAT391

▪ Sometimes: uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

❖ We’ve mentioned, but not defined, one category of cases:

▪ Amortized-case complexity
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Amortized Analyses = Multiple Executions 

5

Single Execution Multiple Executions

Worst Case Amortized Worst Case

Best Case Amortized Best Case

Average Case Amortized Average Case
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Amortized Analysis: ArrayList.add()

❖ Consider adding an element to an array-backed structure

▪ Eg, Java’s ArrayList

❖ When the underlying array fills, we allocate and copy contents
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X X … X - - … -

ArrayList.size() ArrayList’s capacity

X X X X

ArrayList.size()
ArrayList’s capacity

X X X X - - - -

ArrayList.size() ArrayList’s capacity
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ArrayList.add(): Single Operation Runtime

❖ We know that copying a single element and allocating arrays 
are both constant-time operations

▪ Let’s call their runtimes ‘c’ and ‘d’, respectively
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Most of the time Worst case

X X - -

X X X -

X X X X

- - - - - - - -

X X X X

X X X X - - - -

X X X X X - - -

Runtime:

Runtime:
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ArrayList.add(): Worst-Case Amortized Runtime
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- - - - - - - -

X X X X

X X X X - - - -

X X X X X - - -

Worst-case Aggregate Runtime:

- - - -

X - - -

X X - -

X X X -

X X X X

add(X)

add(X)

add(X)

add(X)

add(X)
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Amortized Analysis Intuition

❖ See Weiss, ch 11, for formal methods

❖ But the intuition is: if our client is willing to tolerate it, we will 
“smooth” the aggregate cost of n operations over n itself

❖ Note: we increased our array size by a factor of n (eg, 2n, 3n, 
etc).  What if we increased it by a constant factor (eg, 1, 100, 
1000) instead?
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Single Execution Multiple Executions

Worst Case: Amortized Worst Case: 

Best Case: Amortized Best Case:
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Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A
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Closing Thoughts

❖ Asymptotic analysis gives us a common “frame of reference” 
with which to compare algorithms

▪ Most common comparisons are Big-O, Big-Omega, and Big-Theta

▪ But also little-o and little-omega

❖ Case Analysis != Asymptotic Analysis

▪ We combine asymptotic analysis and case analysis to compare the 
behavior of data structures and algorithms

❖ When comparing two algorithms, you must pick all of these:

▪ A case (eg, best, worst, amortized, etc)

▪ A metric (eg, time, space)

▪ A bound type (eg, big-O, big-Theta, little-omega, etc)
11
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Closing Thoughts

❖ Big-Oh can also use more than one variable

▪ Example: can sum all elements of an n-by-m matrix in O(nm)

▪ We will use this when we get to graphs!

❖ Asymptotic complexity for small n can be misleading

▪ Example: n1/10 vs. log n

• Asymptotically, n1/10 grows more quickly

• But the “cross-over” point (n0) is around 5*1017 ≈ 258; you might prefer n1/10

▪ Example: QuickSort vs InsertionSort

• Expected runtimes: Quicksort is O(n log n) vs InsertionSort O(n2)

• In reality, InsertionSort is faster for small n’s

• (we’ll learn about these sorts later)
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Closing Thoughts

❖ Asymptotic complexity for specific implementations can also 
be misleading …

▪ Evaluating an algorithm?  Use asymptotic analysis

▪ Evaluating an implementation? Timing can be useful

• Either a hardware or a software implementation

❖ At the core of CS is a backbone of theory & mathematics

▪ We’ve spent 2 lectures on how to analyze an algorithm, 
mathematically, not the implementation

▪ But timing has it’s place in the real world

▪ We do want to know whether implementation A runs faster than 
implementation B on data set C

▪ Ex: Benchmarking graphics cards

13
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Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

• Linear Search example

• Binary Search example

• Binary & Linear Sum example

❖ Priority Queue ADT
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Analyzing Code

❖ Basic operations take “some amount of” constant time

▪ Arithmetic

▪ Assignment

▪ Access one Java field or array index

▪ Etc.

▪ (Again, this is an approximation of reality)

❖

15

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Recurrence Solve recurrence equation

Function Calls Time of function’s body

Conditionals Time of condition + time of {slower/faster} 
branch
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Analyzing Iterative Code: Linear Search

Find an integer in a sorted array

16

// requires array is sorted     

// returns whether k is in array

boolean find(int[] arr, int k) {

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}

2 3 5 16 37 50 73 75 126

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish” * (arr.length) + 1  
= O(arr.length)

Runtime expression: 
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Analyzing Recursive Code

❖ Computing runtimes gets interesting with recursion

❖ Example: compute something recursively on a list of size n.  
Conceptually, in each recursive call we:

▪ Perform some amount of work; call it w(n)

▪ Call the function recursively with a smaller portion of the list

❖ If reduce the problem size by 1 during each recursive call, the 
runtime expression is:

▪ Recursive case: T(n) = w(n) + T(n-1)

▪ Base case: T(1) = 5 = O(1)

❖ Recursive part of the expression is the “recurrence relation”
17
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Example Recursive Code: Summing an Array

❖ We can ignore sum’s contribution to the runtime since it’s 
called once and does a constant amount of work

❖ Each time help is called, it does that a constant amount of 
work, and then calls help again on a problem one less than 
previous problem size

❖ Runtime Relation:
T(  ) = 

T(n) = 

18

int sum(int[] arr) {
return help(arr, 0);

}

int help(int[]arr,int i) {

if(i == arr.length) 

return 0;

return arr[i] + help(arr, i+1);

}
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Solving Recurrence Relations: Expansion (1 of 2)

❖ Now we just need to solve our recurrence relation

▪ ie, reduce it to a closed form

❖ Use Technique #1: Expansion

▪ Also known as “unrolling”

❖ Basically, we write it out to find the general-form expansion

T(n) = 5 + T(n-1)

= 5 + 5 + T(n-2)

= 5 + 5 + 5 + T(n-3)

= …

= 5k + T(n-k)
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Solving Recurrence Relations: Expansion (2 of 2)

❖ We have a general-form expansion:

T(n) = 5k + T(n-k)

❖ And a base case:

T(0) = 3

❖ When do we hit the base case?

▪ When n-k = 0!

20
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Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

• Linear Search example

• Binary Search example

• Binary & Linear Sum example

❖ Priority Queue ADT
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Example Recursive Code: Binary Search

Find an integer in a sorted array

22

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k) {

return help(arr,k,0,arr.length);

}

boolean help(int[] arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2

if(lo==hi)        return false;

if(arr[mid] == k) return true;

if(arr[mid] < k)  return help(arr, k, mid+1, hi);

else return help(arr, k, lo, mid);

}

2 3 5 16 37 50 73 75 126
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Example Recursive Code: Binary Search

23

Base case:

Recursive case: 

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k) {

return help(arr,k,0,arr.length);

}

boolean help(int[] arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2

if(lo==hi)        return false;

if(arr[mid] == k) return true;

if(arr[mid] < k)  return help(arr, k, mid+1, hi);

else return help(arr, k, lo, mid);

}
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Technique #1: Expansion

1. Determine the recurrence relation and base case

2. “Expand” the original relation to find the general-form 
expression in terms of the number of expansions

3. Find the closed-form expression by setting the number of 
expansions to a value which reduces to a base case

24
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Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

• Linear Search example

• Binary Search example

• Binary & Linear Sum example

❖ Priority Queue ADT
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Summing an Array, Again (1 of 5)

Two “obviously” linear algorithms:

26

int sum(int[] arr) {
int ans = 0;

for (int i=0; i < arr.length; ++i)

ans += arr[i]; 

return ans;

}

int sum(int[] arr) {
return help(arr,0);

}

int help(int[]arr,int i) {

if (i == arr.length) 

return 0;

return arr[i] + help(arr, i+1);

}

Recursive:

Iterative:
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Summing an Array, Again (2 of 5)

❖ What about a binary version of sum?

▪ Can we get a BinarySearch-like runtime?

27

int sum(int[] arr) {
return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {

if(lo == hi)   return 0;

if(lo == hi-1) return arr[lo];   

int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

}
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Summing an Array, Again (3 of 5)

28
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Technique #2: Tree Method

❖ Idea: We’ll do the same reasoning, but give ourselves a visual 
to make the organization easier

❖ We’ll make a tree

▪ Each node of the tree represents one recursive call 

▪ The children of that node are the new recursive calls made

29
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Summing an Array, Again (4 of 5)

30
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Summing an Array, Again (5 of 5)

❖ Runtime is:

❖ Observation: it adds each number once while doing little else

▪ Can’t do better than O(n); have to read whole array!

32

int sum(int[] arr) {
return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {

if(lo == hi)   return 0;

if(lo == hi-1) return arr[lo];   

int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

}
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int sum(int[] arr) {
return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {

if(lo == hi)   return 0;

if(lo == hi-1) return arr[lo];   

int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

}

Parallelism Teaser

❖ But suppose we could do two recursive calls at the same time

• If you have as much parallelism as needed, the recurrence 
becomes

• T(n) = O(1) + 1 T(n/2)

33
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Really Common Recurrences

34

Recurrence 
Relation

Closed 
Form

Name Example

T(n) = O(1) + T(n/2) O(log n) Logarithmic Binary Search

T(n) = O(1) + T(n-1) O(n) Linear
Sum

(v1: “Recursive Sum”)

T(n) = O(1) + 2T(n/2) O(n) Linear
Sum 

(v2: “Recursive Binary 
Sum”)

T(n) = O(n) + T(n/2) O(n) Linear

T(n) = O(n) + 2T(n/2) O(n log n) Loglinear MergeSort

T(n) = O(n) + T(n-1) O(n2) Quadratic

T(n) = O(1) + 2T(n-1) O(2n) Exponential Fibonacci



CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A
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A Scenario

❖ What is the difference between waiting for service at a 
pharmacy versus an ER?

▪ Pharmacies usually follow the rule “First Come, First Served”

▪ Emergency Rooms assign priorities based on each individual's need

36
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A New ADT: Priority Queue

❖ See Weiss Chapter 6

❖ A priority queue holds compare-able data

▪ Unlike lists, stacks, and queues, we need to compare items

• Given x and y: is x less than, equal to, or greater than y?

• Much of this course will require comparable items: e.g. sorting

▪ Typically two fields: the priority and the data

❖ Aside: we will use integers as priority and data

▪ For simplicity in lecture, we’ll suppose data are ints and that same 
int value is also the priority

• int priorities are common, but really just need Comparable

▪ Not having “other data” is very rare

• Example: print job has a priority and the file to print
37
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Priority Queue ADT

38

Priority Queue ADT. A collection 

storing a set of elements and 

their priority.

• A PQ has a size defined as the 

number of elements in the set

• You can add elements (and their 

priorities)

• You cannot access or remove 

arbitrary elements, only the 

element with the min priority

Primary Operations: 
• add

• deleteMin

Key property:
• deleteMin removes and returns the 

“most important” item (lowest 
priority value)

• Can resolve ties arbitrarily
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Priority Queues

❖ In lecture, we will study min priority queues but you may also 
see max priority queues

▪ Same as minPQs, but invert the priority

❖ In a PQ, the only item that matters
is the min (or max)

39

2deleteMin() 13

9

5
4

4
9

513
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Priority Queue: Example

add a with priority 5

add b with priority 3

add c with priority 4

w = deleteMin

x = deleteMin

add d with priority 2

add e with priority 6

y = deleteMin

z = deleteMin

40

after execution:

6->e

w = b

x = c

y = d

z = a

Analogy: add is like enqueue, and deleteMin is like dequeue

Unlike queues, priority queues use priorities instead of
time-of-insertion to order its elements
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Priority Queue: Applications

❖ Run multiple programs in the operating system
▪ “critical” before “interactive” before “compute-intensive”

❖ Triage (or treat) hospital patients in order of severity

❖ Order print jobs in order of decreasing length?

❖ Forward network packets by order of urgency

❖ Identify most frequently-used symbols for data compression

❖ Sorting!

▪ add all elements, then repeatedly deleteMin

41
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Priority Queue: More Applications

❖ Used heavily in greedy algorithms, where each phase of the 
algorithm picks the locally optimum solution

❖ Example: route finding

▪ Represent a map as a
series of segments

▪ At each intersection, ask
which segment gets you
closest to the destination
(ie, has max priority or
min distance)

42
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Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

▪ Tree Review

pollev.com/332summer :: tinyurl.com/332-06-29A
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Review: Tree Terminology
❖ root(T): 

❖ leaves(T):

❖ children(B):

❖ parent(H):

❖ siblings(E):

❖ ancestors(F):

❖ descendents(G):

❖ subtree(G):

❖ depth(B):

❖ height(G):

❖ height(T):

❖ degree(B):

❖ branching factor(T):

44

A

E

B

D F

C

G

IH

LJ MK N

Tree T
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Types of Trees

45

Perfect Tree
Complete Tree

Binary tree Every node has ≤ 2 children

N-ary tree Every node has ≤ n children

Perfect tree Every row is completely full

Complete tree
All rows except possibly the bottom are 

completely full.  The bottom row is filled from 
left to right 
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Perfect Tree Properties

46

Perfect Tree
Complete Tree

Height Number of Nodes Number of Leaves

1

2

3

4

h


