
CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Algorithm Analysis 3: Recurrences
CSE 332 Summer 2020

Instructor: Richard Jiang

Teaching Assistants:

Hamsa Shankar Kristin Li Winston Jodjana

Maggie Jiang Hans Zhang Michael Duan

Jeffery Tian Annie Mao

Lecture Q&A: pollev.com/332summer

Lecture clarifications: tinyurl.com/332-06-29A

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Announcements

❖ No quiz this week

▪ Future quizzes will have a deadline of 3am on Saturday

▪ Lecture Feedback: Pretty even split between Zoom, Google Docs,
and PollEverywhere

❖ Ex 2,3 out today, due next Monday

▪ Ex 3 is widely considered the hardest, so start early

❖ Project 1 Checkpoint 1 tomorrow!

❖ Guest lecturer on Wednesday

pollev.com/332summer :: tinyurl.com/332-06-29A
2

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A

3

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Complexity Cases

❖ We started with two cases:

▪ Worst-case complexity: maximum number of steps algorithm takes
on “most challenging” input of size N

▪ Best-case complexity: minimum number of steps algorithm takes on
“easiest” input of size N

❖ We are punting on one case: Average-case complexity

▪ Sometimes: relies on distribution of inputs

• Eg, binary heap’s O(1) insert (we will get to this)

• See CSE312 and STAT391

▪ Sometimes: uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

❖ We’ve mentioned, but not defined, one category of cases:

▪ Amortized-case complexity
4

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Amortized Analyses = Multiple Executions

5

Single Execution Multiple Executions

Worst Case Amortized Worst Case

Best Case Amortized Best Case

Average Case Amortized Average Case

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Amortized Analysis: ArrayList.add()

❖ Consider adding an element to an array-backed structure

▪ Eg, Java’s ArrayList

❖ When the underlying array fills, we allocate and copy contents

6

X X … X - - … -

ArrayList.size() ArrayList’s capacity

X X X X

ArrayList.size()
ArrayList’s capacity

X X X X - - - -

ArrayList.size() ArrayList’s capacity

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

ArrayList.add(): Single Operation Runtime

❖ We know that copying a single element and allocating arrays
are both constant-time operations

▪ Let’s call their runtimes ‘c’ and ‘d’, respectively

7

Most of the time Worst case

X X - -

X X X -

X X X X

- - - - - - - -

X X X X

X X X X - - - -

X X X X X - - -

Runtime:

Runtime:

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

ArrayList.add(): Worst-Case Amortized Runtime

8

- - - - - - - -

X X X X

X X X X - - - -

X X X X X - - -

Worst-case Aggregate Runtime:

- - - -

X - - -

X X - -

X X X -

X X X X

add(X)

add(X)

add(X)

add(X)

add(X)

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Amortized Analysis Intuition

❖ See Weiss, ch 11, for formal methods

❖ But the intuition is: if our client is willing to tolerate it, we will
“smooth” the aggregate cost of n operations over n itself

❖ Note: we increased our array size by a factor of n (eg, 2n, 3n,
etc). What if we increased it by a constant factor (eg, 1, 100,
1000) instead?

9

Single Execution Multiple Executions

Worst Case: Amortized Worst Case:

Best Case: Amortized Best Case:

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A

10

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Closing Thoughts

❖ Asymptotic analysis gives us a common “frame of reference”
with which to compare algorithms

▪ Most common comparisons are Big-O, Big-Omega, and Big-Theta

▪ But also little-o and little-omega

❖ Case Analysis != Asymptotic Analysis

▪ We combine asymptotic analysis and case analysis to compare the
behavior of data structures and algorithms

❖ When comparing two algorithms, you must pick all of these:

▪ A case (eg, best, worst, amortized, etc)

▪ A metric (eg, time, space)

▪ A bound type (eg, big-O, big-Theta, little-omega, etc)
11

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Closing Thoughts

❖ Big-Oh can also use more than one variable

▪ Example: can sum all elements of an n-by-m matrix in O(nm)

▪ We will use this when we get to graphs!

❖ Asymptotic complexity for small n can be misleading

▪ Example: n1/10 vs. log n

• Asymptotically, n1/10 grows more quickly

• But the “cross-over” point (n0) is around 5*1017 ≈ 258; you might prefer n1/10

▪ Example: QuickSort vs InsertionSort

• Expected runtimes: Quicksort is O(n log n) vs InsertionSort O(n2)

• In reality, InsertionSort is faster for small n’s

• (we’ll learn about these sorts later)

12

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Closing Thoughts

❖ Asymptotic complexity for specific implementations can also
be misleading …

▪ Evaluating an algorithm? Use asymptotic analysis

▪ Evaluating an implementation? Timing can be useful

• Either a hardware or a software implementation

❖ At the core of CS is a backbone of theory & mathematics

▪ We’ve spent 2 lectures on how to analyze an algorithm,
mathematically, not the implementation

▪ But timing has it’s place in the real world

▪ We do want to know whether implementation A runs faster than
implementation B on data set C

▪ Ex: Benchmarking graphics cards

13

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

• Linear Search example

• Binary Search example

• Binary & Linear Sum example

❖ Priority Queue ADT

14

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Analyzing Code

❖ Basic operations take “some amount of” constant time

▪ Arithmetic

▪ Assignment

▪ Access one Java field or array index

▪ Etc.

▪ (Again, this is an approximation of reality)

❖

15

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Recurrence Solve recurrence equation

Function Calls Time of function’s body

Conditionals Time of condition + time of {slower/faster}
branch

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Analyzing Iterative Code: Linear Search

Find an integer in a sorted array

16

// requires array is sorted

// returns whether k is in array

boolean find(int[] arr, int k) {

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}

2 3 5 16 37 50 73 75 126

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish” * (arr.length) + 1
= O(arr.length)

Runtime expression:

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Analyzing Recursive Code

❖ Computing runtimes gets interesting with recursion

❖ Example: compute something recursively on a list of size n.
Conceptually, in each recursive call we:

▪ Perform some amount of work; call it w(n)

▪ Call the function recursively with a smaller portion of the list

❖ If reduce the problem size by 1 during each recursive call, the
runtime expression is:

▪ Recursive case: T(n) = w(n) + T(n-1)

▪ Base case: T(1) = 5 = O(1)

❖ Recursive part of the expression is the “recurrence relation”
17

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Example Recursive Code: Summing an Array

❖ We can ignore sum’s contribution to the runtime since it’s
called once and does a constant amount of work

❖ Each time help is called, it does that a constant amount of
work, and then calls help again on a problem one less than
previous problem size

❖ Runtime Relation:
T() =

T(n) =

18

int sum(int[] arr) {
return help(arr, 0);

}

int help(int[]arr,int i) {

if(i == arr.length)

return 0;

return arr[i] + help(arr, i+1);

}

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Solving Recurrence Relations: Expansion (1 of 2)

❖ Now we just need to solve our recurrence relation

▪ ie, reduce it to a closed form

❖ Use Technique #1: Expansion

▪ Also known as “unrolling”

❖ Basically, we write it out to find the general-form expansion

T(n) = 5 + T(n-1)

= 5 + 5 + T(n-2)

= 5 + 5 + 5 + T(n-3)

= …

= 5k + T(n-k)

19

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Solving Recurrence Relations: Expansion (2 of 2)

❖ We have a general-form expansion:

T(n) = 5k + T(n-k)

❖ And a base case:

T(0) = 3

❖ When do we hit the base case?

▪ When n-k = 0!

20

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

• Linear Search example

• Binary Search example

• Binary & Linear Sum example

❖ Priority Queue ADT

21

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Example Recursive Code: Binary Search

Find an integer in a sorted array

22

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {

return help(arr,k,0,arr.length);

}

boolean help(int[] arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2

if(lo==hi) return false;

if(arr[mid] == k) return true;

if(arr[mid] < k) return help(arr, k, mid+1, hi);

else return help(arr, k, lo, mid);

}

2 3 5 16 37 50 73 75 126

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Example Recursive Code: Binary Search

23

Base case:

Recursive case:

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {

return help(arr,k,0,arr.length);

}

boolean help(int[] arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2

if(lo==hi) return false;

if(arr[mid] == k) return true;

if(arr[mid] < k) return help(arr, k, mid+1, hi);

else return help(arr, k, lo, mid);

}

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Technique #1: Expansion

1. Determine the recurrence relation and base case

2. “Expand” the original relation to find the general-form
expression in terms of the number of expansions

3. Find the closed-form expression by setting the number of
expansions to a value which reduces to a base case

24

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

• Linear Search example

• Binary Search example

• Binary & Linear Sum example

❖ Priority Queue ADT

25

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Summing an Array, Again (1 of 5)

Two “obviously” linear algorithms:

26

int sum(int[] arr) {
int ans = 0;

for (int i=0; i < arr.length; ++i)

ans += arr[i];

return ans;

}

int sum(int[] arr) {
return help(arr,0);

}

int help(int[]arr,int i) {

if (i == arr.length)

return 0;

return arr[i] + help(arr, i+1);

}

Recursive:

Iterative:

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Summing an Array, Again (2 of 5)

❖ What about a binary version of sum?

▪ Can we get a BinarySearch-like runtime?

27

int sum(int[] arr) {
return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;

if(lo == hi-1) return arr[lo];

int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

}

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Summing an Array, Again (3 of 5)

28

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Technique #2: Tree Method

❖ Idea: We’ll do the same reasoning, but give ourselves a visual
to make the organization easier

❖ We’ll make a tree

▪ Each node of the tree represents one recursive call

▪ The children of that node are the new recursive calls made

29

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Summing an Array, Again (4 of 5)

30

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

31

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Summing an Array, Again (5 of 5)

❖ Runtime is:

❖ Observation: it adds each number once while doing little else

▪ Can’t do better than O(n); have to read whole array!

32

int sum(int[] arr) {
return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;

if(lo == hi-1) return arr[lo];

int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

}

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

int sum(int[] arr) {
return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;

if(lo == hi-1) return arr[lo];

int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

}

Parallelism Teaser

❖ But suppose we could do two recursive calls at the same time

• If you have as much parallelism as needed, the recurrence
becomes

• T(n) = O(1) + 1 T(n/2)

33

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Really Common Recurrences

34

Recurrence
Relation

Closed
Form

Name Example

T(n) = O(1) + T(n/2) O(log n) Logarithmic Binary Search

T(n) = O(1) + T(n-1) O(n) Linear
Sum

(v1: “Recursive Sum”)

T(n) = O(1) + 2T(n/2) O(n) Linear
Sum

(v2: “Recursive Binary
Sum”)

T(n) = O(n) + T(n/2) O(n) Linear

T(n) = O(n) + 2T(n/2) O(n log n) Loglinear MergeSort

T(n) = O(n) + T(n-1) O(n2) Quadratic

T(n) = O(1) + 2T(n-1) O(2n) Exponential Fibonacci

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A

35

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

A Scenario

❖ What is the difference between waiting for service at a
pharmacy versus an ER?

▪ Pharmacies usually follow the rule “First Come, First Served”

▪ Emergency Rooms assign priorities based on each individual's need

36

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

A New ADT: Priority Queue

❖ See Weiss Chapter 6

❖ A priority queue holds compare-able data

▪ Unlike lists, stacks, and queues, we need to compare items

• Given x and y: is x less than, equal to, or greater than y?

• Much of this course will require comparable items: e.g. sorting

▪ Typically two fields: the priority and the data

❖ Aside: we will use integers as priority and data

▪ For simplicity in lecture, we’ll suppose data are ints and that same
int value is also the priority

• int priorities are common, but really just need Comparable

▪ Not having “other data” is very rare

• Example: print job has a priority and the file to print
37

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Priority Queue ADT

38

Priority Queue ADT. A collection

storing a set of elements and

their priority.

• A PQ has a size defined as the

number of elements in the set

• You can add elements (and their

priorities)

• You cannot access or remove

arbitrary elements, only the

element with the min priority

Primary Operations:
• add

• deleteMin

Key property:
• deleteMin removes and returns the

“most important” item (lowest
priority value)

• Can resolve ties arbitrarily

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Priority Queues

❖ In lecture, we will study min priority queues but you may also
see max priority queues

▪ Same as minPQs, but invert the priority

❖ In a PQ, the only item that matters
is the min (or max)

39

2deleteMin() 13

9

5
4

4
9

513

add(7)

2

1

13

9

5
4

7

add(1)

7 1513

9

5
4

7 2

2 13

9

5
4

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Priority Queue: Example

add a with priority 5

add b with priority 3

add c with priority 4

w = deleteMin

x = deleteMin

add d with priority 2

add e with priority 6

y = deleteMin

z = deleteMin

40

after execution:

6->e

w = b

x = c

y = d

z = a

Analogy: add is like enqueue, and deleteMin is like dequeue

Unlike queues, priority queues use priorities instead of
time-of-insertion to order its elements

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Priority Queue: Applications

❖ Run multiple programs in the operating system
▪ “critical” before “interactive” before “compute-intensive”

❖ Triage (or treat) hospital patients in order of severity

❖ Order print jobs in order of decreasing length?

❖ Forward network packets by order of urgency

❖ Identify most frequently-used symbols for data compression

❖ Sorting!

▪ add all elements, then repeatedly deleteMin

41

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Priority Queue: More Applications

❖ Used heavily in greedy algorithms, where each phase of the
algorithm picks the locally optimum solution

❖ Example: route finding

▪ Represent a map as a
series of segments

▪ At each intersection, ask
which segment gets you
closest to the destination
(ie, has max priority or
min distance)

42

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Lecture Outline

❖ Algorithm Analysis

▪ Review: Amortized bounds

▪ Where We’ve Come

▪ Recurrences

❖ Priority Queue ADT

▪ Tree Review

pollev.com/332summer :: tinyurl.com/332-06-29A

43

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Review: Tree Terminology
❖ root(T):

❖ leaves(T):

❖ children(B):

❖ parent(H):

❖ siblings(E):

❖ ancestors(F):

❖ descendents(G):

❖ subtree(G):

❖ depth(B):

❖ height(G):

❖ height(T):

❖ degree(B):

❖ branching factor(T):

44

A

E

B

D F

C

G

IH

LJ MK N

Tree T

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Types of Trees

45

Perfect Tree
Complete Tree

Binary tree Every node has ≤ 2 children

N-ary tree Every node has ≤ n children

Perfect tree Every row is completely full

Complete tree
All rows except possibly the bottom are

completely full. The bottom row is filled from
left to right

CSE332, Summer 2020L04: Algorithm Analysis 3: Recurrences

Perfect Tree Properties

46

Perfect Tree
Complete Tree

Height Number of Nodes Number of Leaves

1

2

3

4

h

