YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Algorithm Analysis 3: Recurrences
CSE 332 Summer 2020

Instructor: Richard Jiang

Teaching Assistants:
Hamsa Shankar KristinLi ~ Winston Jodjana

Maggie Jiang Hans Zhang Michael Duan
Jeffery Tian Annie Mao

Lecture Q&A: pollev.com/332summer
Lecture clarifications: tinyurl.com/332-06-29A

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Announcements
« No quiz this week

® Future quizzes will have a deadline of 3am on Saturday

® Lecture Feedback: Pretty even split between Zoom, Google Docs,
and PollEverywhere

+ Ex 2,3 out today, due next Monday
® Ex 3 is widely considered the hardest, so start early

+ Project 1 Checkpoint 1 tomorrow!

« Guest lecturer on Wednesday

pollev.com/332summer :: tinyurl.com/332-06-29A

W UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

CSE332, Summer 2020

Lecture Outline
« Algorithm Analysis
= Review: Amortized bounds

" Where We’ve Come

® Recurrences

+ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Complexity Cases

«» We started with two cases:

= Worst-case complexity: maximum number of steps algorithm takes
on “most challenging” input of size N

= Best-case complexity: minimum number of steps algorithm takes on
“easiest” input of size N

« We are punting on one case: Average-case complexity

= Sometimes: relies on distribution of inputs
- Eg, binary heap’s O(1) insert (we will get to this)
- See CSE312 and STAT391

= Sometimes: uses randomization in the algorithm
« Will see an example with sorting; also see CSE312

« We’ve mentioned, but not defined, one category of cases:
= Amortized-case complexity

W UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Amortized Analyses = Multiple Executions

Single Execution Multiple Executions

Worst Case Amortized Worst Case
Best Case Amortized Best Case

Average Case Amortized Average Case

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Amortized Analysis: ArrayList.add()

+ Consider adding an element to an array-backed structure

, .
" Eg, Java's ArrayList ArrayList.size() ArrayList’s capacity

X X X - - -

« When the underlying array fills, we allocate and copy contents

ArrayList.size()
Arraylist’s capacity

X X X X - - - -

1 1

ArraylList.size() ArrayList’s capacity 6

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

ArrayList.add(): Single Operation Runtime

+ We know that copying a single element and allocating arrays
are both constant-time operations

® Let’s call their runtimes ‘c’ and ‘d’, respectively

Most of the time Worst case

X | X | X | X

D Runtime:

X X]] X | X | X | X
X X X -

X[X[X[Xx|-|-1|-]-
Runtime: G

XX [x| x| x|-]-]-],

YA UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

CSE332, Summer 2020

ArrayList.add(): Worst-Case Amortized Runtime

add (X)
X| X | X | X
X| X | X | X - - - -
X | X | X | X | X - - -

Worst-case Aggregate Runtime:

W UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Amortized Analysis Intuition

« See Weiss, ch 11, for formal methods

« But the intuition is: if our client is willing to tolerate it, we will
“smooth” the aggregate cost of n operations over n itself

Single Execution Multiple Executions

Worst Case: Amortized Worst Case:

Best Case: Amortized Best Case:

+ Note: we increased our array size by a factor of n (eg, 2n, 3n,
etc). What if we increased it by a constant factor (eg, 1, 100,
1000) instead?

YA UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

CSE332, Summer 2020

Lecture Outline

« Algorithm Analysis
= Review: Amortized bounds
" Where We’ve Come

® Recurrences

+ Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A

10

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Closing Thoughts

« Asymptotic analysis gives us a common “frame of reference”
with which to compare algorithms

" Most common comparisons are Big-O, Big-Omega, and Big-Theta
= But also little-o and little-omega

+ Case Analysis != Asymptotic Analysis

= We combine asymptotic analysis and case analysis to compare the
behavior of data structures and algorithms

<« When comparing two algorithms, you must pick all of these:
= A case (eg, best, worst, amortized, etc)
= A metric (eg, time, space)
= A bound type (eg, big-O, big-Theta, little-omega, etc)

11

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Closing Thoughts

<« Big-Oh can also use more than one variable
= Example: can sum all elements of an n-by-m matrix in O(nm)
= We will use this when we get to graphs!

« Asymptotic complexity for small n can be misleading
= Example: n¥1%vs. 1log n
- Asymptotically, n*/1° grows more quickly
- But the “cross-over” point (n,) is around 5*10%7 = 2°8; you might prefer n'/10
= Example: QuickSort vs InsertionSort
- Expected runtimes: Quicksort is O(n log n) vs InsertionSort O(n2)
+ In reality, InsertionSort is faster for small n’s
 (we’ll learn about these sorts later)

12

W UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Closing Thoughts

« Asymptotic complexity for specific implementations can also
be misleading ...

® Evaluating an algorithm? Use asymptotic analysis

= Evaluating an implementation? Timing can be useful
- Either a hardware or a software implementation

« At the core of CS is a backbone of theory & mathematics

= We've spent 2 lectures on how to analyze an algorithm,
mathematically, not the implementation

= But timing has it’s place in the real world

= We do want to know whether implementation A runs faster than
implementation B on data set C

® Ex: Benchmarking graphics cards

13

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Lecture Outline

« Algorithm Analysis
= Review: Amortized bounds
" Where We’ve Come

® Recurrences
+ Linear Search example
- Binary Search example
« Binary & Linear Sum example

« Priority Queue ADT

14

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Analyzing Code

+ Basic operations take “some amount of” constant time
= Arithmetic
" Assignment
= Access one Java field or array index
" Etc.
= (Again, this is an approximation of reality)

Recurrence Solve recurrence equation

15

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Analyzing Iterative Code: Linear Search

Find an integer in a sorted array

2 3 5 (16|37 (50| 73 |75] 126

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
for (int 1=0; 1 < arr.length; ++1i)
if(arr[i] == k)
return true; Best case: 6 “ish” steps = O(1)
return false;

} Worst case: 5 “ish” * (arr.length) + 1
= O(arr.length)

Runtime expression:

16

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Analyzing Recursive Code

/7
0.0

Computing runtimes gets interesting with recursion

K/
0.0

Example: compute something recursively on a list of size n.
Conceptually, in each recursive call we:

= Perform some amount of work; call it w(n)
= Call the function recursively with a smaller portion of the list

K/
0’0

If reduce the problem size by 1 during each recursive call, the
runtime expression is:

= Recursive case: T(n) = w(n) + T(n-1) —T'(5 _ L (f\)‘\'—f ('\~\>
® Base case: T(1) =5=0(1) = = \,(n= \

« Recursive part of the expression is the “recurrence relation”

17

YA UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

CSE332, Summer 2020

Example Recursive Code: Summing an Array

« We can ignore sum’s contribution to the runtime since it’s
called once and does a constant amount of work

+ Each time helpis called, it does that a constant amount of
work, and then calls help again on a problem one less than

previous problem size

«» Runtime Relation:
T()=

T(n) =

int sum(int[] arr) {
return help(arr, 0);

}

int help(int[]arr,int i) {
1if (i1 == arr.length)
return 0;
return arr[i]

}

+ help(arr, i+1);

18

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Solving Recurrence Relations: Expansion (1 of 2)

« Now we just need to solve our recurrence relation

" je, reduce it to a closed form

« Use Technique #1: Expansion
= Also known as “unrolling”

+ Basically, we write it out to find the general-form expansion
T(n) =5+ T(n-1)
=5+5+T(n-2)
=5+5+5+T(n-3)

= 5k + T(n-k)

19

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Solving Recurrence Relations: Expansion (2 of 2)

« We have a general-form expansion:
T(n) = 5k + T(n-k)

+ And a base case:
T(0) =3

«» When do we hit the base case?
" When n-k = 0!

20

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Lecture Outline

« Algorithm Analysis
= Review: Amortized bounds
" Where We’ve Come

® Recurrences
« Linear Search example
- Binary Search example
« Binary & Linear Sum example

« Priority Queue ADT

21

CSE332, Summer 2020

LO4: Algorithm Analysis 3: Recurrences

YA UNIVERSITY of WASHINGTON

Example Recursive Code: Binary Search

Find an integer in a sorted array

2 3 5 16 | 37 | 50 | 73 | 75| 126
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
return help(arr,k,0,arr.length);
}
boolean help (int[] arr, int k, int lo, int hi) {
int mid = (hi+lo)/2; // i.e., lo+(hi-1lo0)/2
1if (lo==hi) return false;
if (arr[mid] == k) return true;
if (arr[mid] < k) return help(arr, k, mid+1l, hi);
else return help(arr, k, lo, mid);
}

22

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Example Recursive Code: Binary Search

Base case:

Recursive case:

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
return help(arr,k,0,arr.length);

}

int mid = (hi+lo)/2; // i.e., lo+(hi-1lo0)/2
1if (lo==hi) return false;
if (arr[mid] == k) return true;

else return help(arr, k, lo,

boolean help (int[] arr, int k, int lo, int hi) {

if (arr[mid] < k) return help(arr, k, mid+1l, hi);

mid) ;

23

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Technique #1: Expansion

1.

Determine the recurrence relation and base case

“Expand” the original relation to find the general-form
expression in terms of the number of expansions

Find the closed-form expression by setting the number of
expansions to a value which reduces to a base case

24

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Lecture Outline

« Algorithm Analysis
= Review: Amortized bounds
" Where We’ve Come

® Recurrences
« Linear Search example
- Binary Search example
- Binary & Linear Sum example

« Priority Queue ADT

25

CSE332, Summer 2020

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences

Summing an Array, Again (1 of 5)

Two “obviously” linear algorithms:

int sum(int[] arr) {

Iterative: int ans = 0;

for (int 1=0; i < arr.length; ++1i)
ans += arr[i];

return ans;

int sum(int[] arr) {
return help(arr,0);
}
int help(int[]arr,int i) {
if (i1 == arr.length)
return 0;
return arr[i] + help(arr, 1i+1);

}

Recursive:

26

W UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

Summing an Array, Again (2 of 5)

« What about a binary version of sum?

® Can we get a BinarySearch-like runtime?

CSE332, Summer 2020

int sum(int[] arr) {

return help(arr, 0, arr.length);

}

int help(int[] arr, int lo, int hi) {
if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr,

mid, hi);

27

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Summing an Array, Again (3 of 5)

28

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Technique #2: Tree Method

+ ldea: We’ll do the same reasoning, but give ourselves a visual
to make the organization easier

« We'll make a tree
® Each node of the tree represents one recursive call
® The children of that node are the new recursive calls made

29

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Summing an Array, Again (4 of 5)

30

W UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

31

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Summing an Array, Again (5 of 5)
+ Runtime is:

+ Observation: it adds each number once while doing little else
® Can’t do better than O(n); have to read whole array!

int sum(int[] arr) {
return help(arr, 0, arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

32

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Parallelism Teaser

« But suppose we could do two recursive calls at the same time

If you have as much parallelism as needed, the recurrence
becomes

e T(n)=0(1)+1T(n/2)

int sum(int[] arr) {
return help(arr, 0, arr.length);
}
int help(int[] arr, int lo, int hi) {

if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;

return help(arr, lo, mid) + help(arr, mid, hi);

33

W UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Really Common Recurrences

Recurrence Closed Example
Relation Form i

T(n) = 0O(1) + T(n/2) O(log n) Logarithmic Binary Search
. Sum
T(n) = 0(1) + T(n-1) O(n) Linear (v1: “Recursive Sum”)
Sum
T(n) = O(1) + 2T(n/2) O(n) Linear (v2: “Recursive Binary
Sum”)
T(n) = O(n) + T(n/2) O(n) Linear
T(n) = 0O(n) + 2T(n/2) O(n logn) Loglinear MergeSort
T(n) = O(n) + T(n-1) O(n?) Quadratic

T(n) = 0O(1) + 2T(n-1) 0o(2") Exponential Fibonacci

34

W UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

CSE332, Summer 2020

Lecture Outline

« Algorithm Analysis
= Review: Amortized bounds
= Where We’ve Come
® Recurrences

<« Priority Queue ADT

pollev.com/332summer :: tinyurl.com/332-06-29A

35

YA UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

A Scenario

« What is the difference between waiting for service at a
pharmacy versus an ER?

® Pharmacies usually follow the rule “First Come, First Served”

= Emergency Rooms assign priorities based on each individual's need

36

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

A New ADT: Priority Queue

+ See Weiss Chapter 6

« A priority queue holds compare-able data

= Unlike lists, stacks, and queues, we need to compare items
« Given x and y: is x less than, equal to, or greater than y?
« Much of this course will require comparable items: e.g. sorting

= Typically two fields: the priority and the data

+ Aside: we will use integers as priority and data
= For simplicity in lecture, we’ll suppose data are ints and that same
int value is also the priority
- int priorities are common, but really just need Comparable
® Not having “other data” is very rare
- Example: print job has a priority and the file to print

37

W UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

CSE332, Summer 2020

Priority Queue ADT

r

Priority Queue ADT. A collection
storing a set of elements and
their priority.

® A PQ has asize defined as the

number of elements in the set

® You can add elements (and their

priorities)

® You cannot access or remove

arbitrary elements, only the
element with the min priority

Primary Operations:
* add
* deleteMin

Key property:

* deleteMinremoves and returns the
“most important” item (lowest
priority value)

* Canresolve ties arbitrarily

38

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Priority Queues

+ In lecture, we will study min priority queues but you may also
see max priority queues

= Same as minPQs, but invert the priority
add(7)

+’

+ In a PQ, the only item that matters
is the min (or max)

‘ add(1)
o+’

deleteMin()

3 1

39

CSE332, Summer 2020

W UNIVERSITY of WASHINGTON

Priority Queue: Example

add a with priority 5
add b with priority 3
add c with priority 4
w=deleteMin

x =deleteMin
add d with priority 2
add e with priority 6
y=deleteMin
z=deleteMin

Analogy: add is like enqueue, and deleteMin is like dequeue

LO4: Algorithm Analysis 3: Recurrences

after execution:

6->e

N N X I

h Q. Q b

Unlike queues, priority queues use priorities instead of
time-of-insertion to order its elements

40

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Priority Queue: Applications

« Run multiple programs in the operating system
= “critical” before “interactive” before “compute-intensive”

<« Triage (or treat) hospital patients in order of severity
« Order print jobs in order of decreasing length?
« Forward network packets by order of urgency

+ ldentify most frequently-used symbols for data compression

+ Sorting!

" add all elements, then repeatedly deleteMin

41

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Priority Queue: More Applications

+ Used heavily in greedy algorithms, where each phase of the
algorithm picks the locally optimum solution

L\ /" @ Padelford
) ot ThomSson Hall (TI:{O] 48
‘ 5 ¢ o)
. . . | . ! . N e Uniw
« Example: route finding IQsmithHal M A ook e @ 5w
®og/ Grieg Gard
" Represent a map as a ~Q & - B | ‘
Vo ¢ 0 - HUB Yard = 2
b The Un
series of segments Redsuase ¥ 1 o [Tt
]) @@ Allen Libraries | Husk‘y Union
® At each intersection, ask o e Bldg (HUB) l
. : P b |
which segment getsyou S Sieq Hel i
. . REGEoEr @ _Mary Gates Hall UW Engineering Library
closest to the destination ~ ! : Q
. . . &/ Johigon Hall (JHN) < B
(ie, has max priority or . i o
L] . % | —Y
. . [} f Electrical & A 7-|mln University
min distance) o S roniter L e
o Drumbeller Fountain o ®® v [B[@;f;gg\g
P s \J >0
Chemistry Library \ (") . N Ln NE
3uilding (CHL) \ 5’@
\ %% e !
\ (e} @9 Paul G. Allen Center
: ®° for Computer Science...
Benson Hall (BNS) o

42

YA UNIVERSITY of WASHINGTON

Lecture Outline

« Algorithm Analysis
= Review: Amortized bounds
= Where We’ve Come
® Recurrences

+ Priority Queue ADT
" Tree Review

pollev.com/332summer :: tinyurl.com/332-06-29A

LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

43

W UNIVERSITY of WASHINGTON

LO4: Algorithm Analysis 3: Recurrences

Review: Tree Terminology

« root(T):

« leaves(T):

<« children(B):
« parent(H):

<« siblings(E):
<« ancestors(F):
<+ descendents(G):
+ subtree(G):
<« depth(B):

+ height(G):

<« height(T):

« degree(B):

+ branching factor(T):

CSE332, Summer 2020

Tree T

44

YA UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Types of Trees
Binary tree Every node has < 2 children
N-ary tree Every node has < n children
Perfect tree Every row is completely full
All rows except possibly the bottom are
Complete tree completely full. The bottom row is filled from

left to right

Perfect Tree m

Complete Tree

45

W UNIVERSITY of WASHINGTON LO4: Algorithm Analysis 3: Recurrences CSE332, Summer 2020

Perfect Tree Properties

m Number of Nodes Number of Leaves

Perfect Tree m

Complete Tree

> B~ W N P

46

