
CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm
CSE 332 Spring 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Annie Mao Howard Xiao Lucy Jiang

Chris Choi Jade Watkins Nathan Lipiarski

Ethan Knutson Khushi Chaudhari Richard Jiang

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Warm-Up

❖ Find the shortest path from A to E …

▪ … assuming this graph is unweighted

▪ … assuming this graph is weighted

2

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

CSE332, Spring 2020L25: Dijkstra’s Algorithm

pollev.com/cse332

❖ How are the pre-lecture warm-up exercises working?

▪ These are the “answer this question on a sheet of paper”, with the answer
embedded into the day’s lecture content

A. They help me prepare for lecture. Don’t change a thing!

B. They help me a bit. I like the format, but the questions aren’t great.

C. They help me a bit. I like the questions, but I don’t get anything out
of the format.

D. I do them; they help me a bit.

E. I do them, but they’re not helpful.

F. I don’t do them; there’s not enough time.

G. I don’t do them; they don’t seem valuable.

3

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Announcements

❖ Don’t forget to upgrade your Zoom client! 4.x clients will be
rejected by Zoom servers after May 30th

❖ Exs 14-15 released soon, due Fri, Jun 5

❖ Next week (the final week of instruction), we have**:

▪ ** probably

▪ Wed, Jun 3: Project 3 due

▪ Wed, Jun 3 - Fri, Jun 5: Quiz 5

▪ Fri, Jun 5: Exercises 14-15 due

Lecture questions: pollev.com/cse332
4

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Learning Objectives

❖ Know several applications for shortest-path problems

❖ Implement Dijkstra’s Algorithm

❖ Be able to prove its runtime and correctness

5

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Lecture Outline

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
▪ Introduction

▪ Correctness Proof

▪ Runtime

Lecture questions: pollev.com/cse332

6

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Single-Source Shortest Paths

❖ We’ve seen BFS finds the minimum path length from v to u

▪ Runtime: O(|E|+|V|)

❖ Actually, BFS finds the min path length from v to every vertex

▪ Still O(|E|+|V|)

▪ Worst-case runtime for single-destination is no faster than worst-
case runtime for all-destinations

7

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Shortest Path: Applications

❖ Network routing

❖ Driving directions

❖ Cheap flight tickets

❖ Critical paths in project management (see textbook)

❖ …

Wait, these are all weighted graphs!

8

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Single-Source Shortest Paths … for Weighted Graphs

❖ As before:

▪ All-destinations is asymptotically no harder than single-destination

❖ Unlike before:

▪ BFS will not work

9

Given a weighted graph and vertex v,
find the minimum-cost path from v to every vertex

CSE332, Spring 2020L25: Dijkstra’s Algorithm

BFS for Weighted Graphs

❖ BFS doesn’t work! Shortest path may not have fewest edges

▪ Eg: cost of flight. May be cheaper to fly through a hub than fly direct

❖ We will assume there are no negative edge weights

▪ Entire problem is ill-defined if there are negative-cost cycles

▪ Today’s algorithm is wrong if there are negative-cost edges

10

500

100
100 100

100

7

10 5

-11

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Negative Cycles vs Negative Edges

❖ Negative cycles: no
algorithm can find a
finite optimal path

▪ You can always decrease the
distance by going through
the negative cycle a few
more times

❖ Negative edges: Dijkstra’s
can’t guarantee correctness

▪ But other algorithms might

11

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Lecture Outline

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
▪ Introduction

▪ Correctness Proof

▪ Runtime

Lecture questions: pollev.com/cse332

12

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm

❖ Named after its inventor, Edsger Dijkstra (1930-2002)

▪ Truly one of the “founders” of computer science

▪ 1972 Turing Award

▪ This algorithm is just one of his many contributions!

▪ Example quote: “Computer science is no more about computers than
astronomy is about telescopes”

❖ The idea: reminiscent of BFS, but adapted to handle weights

▪ Grow the set of nodes whose shortest distance has been computed

▪ Nodes not in the set will have a “best distance so far”

13

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Idea

❖ Initialization:

▪ Start vertex has distance 0; all other vertices have distance 

❖ At each step:

▪ Pick closest unknown vertex v

▪ Add it to the “cloud” of known vertices

▪ Update distances for nodes with edges from v

14

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

0

4

2

1

4??

12??

∞

∞

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Pseudocode
dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance = 

v.known = false

start.distance = 0

while there are vertices in g that are not known:

select vertex v with lowest cost

v.known = true

foreach edge (v, u) with weight w:

d1 = v.distance + w // best path through v to u

d2 = u.distance // previous best path to u

if (d1 < d2) // if this is a better path to u

u.distance = d1

u.previous = v // backtracking info to

// recreate path

}

15Remember our 5-step pattern for a graph traversal?

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Important Features

❖ Once a vertex is marked known, its shortest path is known

▪ Can reconstruct path by following back-pointers (“previous” fields)

❖ While a vertex is not known, another shorter path might be
found

16

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

17

Order Added to Known Set:

Vertex Known? Distance Previous

A 

B 

C 

D 

E 

F 

G 

H 

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

  









0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

18

Order Added to Known Set:
A

Vertex Known? Distance Previous

A Y 0 /

B  2 A

C  1 A

D  4 A

E 

F 

G 

H 

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2??  

1??

4??





0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

19

Order Added to Known Set:
A, C

Vertex Known? Distance Previous

A Y 0 /

B  2 A

C Y 1 A

D  4 A

E  12 C

F 

G 

H 

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2??  

1

4??



12??

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

20

Order Added to Known Set:
A, C, B

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D  4 A

E  12 C

F  4 B

G 

H 

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4?? 

1

4??



12??

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

21

Order Added to Known Set:
A, C, B, D

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F  4 B

G 

H 

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4?? 

1

4



12??

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

22

Order Added to Known Set:
A, C, B, D, F

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G 

H  7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7??

1

4



12??

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

23

Order Added to Known Set:
A, C, B, D, F, H

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G  8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8??

12??

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

24

Order Added to Known Set:
A, C, B, D, F, H, G

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11??

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

25

Order Added to Known Set:
A, C, B, D, F, H, G, E

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11

0

🐐🐐 TADA!!! 🐐🐐

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Interpreting the Results

❖ Now that we’re done, how do
we get the path from A to E?

26

Order Added to Known Set:
A, C, B, D, F, H, G, E

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Stopping Short

❖ Would this have been different if
we only wanted:

▪ The path from A to G?

▪ The path from A to D?

27

Order Added to Known Set:
A, C, B, D, F, H, G, E

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11

0

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Review: Important Features

❖ Once a vertex is marked known, its shortest path is known

▪ Can reconstruct path by following back-pointers (“previous” fields)

❖ While a vertex is not known, another shorter path might be
found

❖ The “Order Added to Known Set” is unimportant

▪ A detail about how the algorithm works (client doesn’t care)

▪ Not used by the algorithm (implementation doesn’t care)

▪ It is sorted by path-distance; ties are resolved “somehow”

28

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

29

Order Added to Known Set:

Vertex Known? Distance Previous

A 

B 

C 

D 

E 

F 

G 

A B

C
D

F

E

G

0 
2

1
2

5

1

1

1

2 6

5 3

10











CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

30

Order Added to Known Set:
A

Vertex Known? Distance Previous

A Y 0 /

B 

C  2 A

D  1 A

E 

F 

G 

A B

C
D

F

E

G

0 
2

1
2

5

1

1

1

2 6

5 3

10





1??

2??



CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

31

Order Added to Known Set:
A, D

Vertex Known? Distance Previous

A Y 0 /

B  6 D

C  2 A

D Y 1 A

E  2 D

F  7 D

G  6 D

A B

C
D

F

E

G

0 6??
2

1
2

5

1

1

1

2 6

5 3

10

2??

6??

1

2??

7??

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

32

Order Added to Known Set:
A, D, C

Vertex Known? Distance Previous

A Y 0 /

B  6 D

C Y 2 A

D Y 1 A

E  2 D

F  4 C

G  6 D

A B

C
D

F

E

G

0 6??
2

1
2

5

1

1

1

2 6

5 3

10

2??

6??

1

2

4??

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

33

Order Added to Known Set:
A, D, C, E

Vertex Known? Distance Previous

A Y 0 /

B  3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

A B

C
D

F

E

G

0 3??
2

1
2

5

1

1

1

2 6

5 3

10

2

6??

1

2

4??

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

34

Order Added to Known Set:
A, D, C, E, B

Vertex Known? Distance Previous

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

A B

C
D

F

E

G

0 3
2

1
2

5

1

1

1

2 6

5 3

10

2

6??

1

2

4??

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

35

Order Added to Known Set:
A, D, C, E, B, F

Vertex Known? Distance Previous

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G  6 D

A B

C
D

F

E

G

0 3
2

1
2

5

1

1

1

2 6

5 3

10

2

6??

1

2

4

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

36

Order Added to Known Set:
A, D, C, E, B, F, G

Vertex Known? Distance Previous

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

A B

C
D

F

E

G

0 3
2

1
2

5

1

1

1

2 6

5 3

10

2

6

1

2

4

🐷🐷WOOHOO!!! 🐷🐷

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #3

❖ How will the best-pathlen-so-far for Y proceed?

▪ 90, 81, 72, 63, 54, …

❖ Is this expensive?

▪ No, each edge is processed only once

37

Y

X
1 1 1 1

90 80 70 60 50

CSE332, Spring 2020L25: Dijkstra’s Algorithm

pollev.com/cse332

❖ Next week (the final week of instruction), we have:

▪ Wed, Jun 3: Project 3 due

▪ Wed, Jun 3 - Fri, Jun 5: Quiz 5

▪ Fri, Jun 5: Exercises 14-15 due

❖ If we made the following changes, how would it affect you?

▪ Project 3 due: Thu, Jun 4

▪ Quiz 5: Mon, Jun 8 - Wed, Jun 10 (week 11, finals week)

A. YES! I need this

B. It’d be helpful

C. Neutral

D. It’d be painful but doable

E. NO! Please don’t do this

38

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Lecture Outline

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

▪ Introduction

▪ Correctness Proof

▪ Runtime

Lecture questions: pollev.com/cse332

39

CSE332, Spring 2020L25: Dijkstra’s Algorithm

A Greedy Algorithm

❖ Dijkstra’s Algorithm

▪ Single-source shortest paths in a weighted graph (directed or
undirected) with no negative-weight edges

❖ Dijkstra’s is an example of a greedy algorithm:

▪ At each step, irrevocably does what seems best at that step

• Makes locally optimal decision; decision isn’t necessarily globally optimal

▪ Once a vertex is known, it is not revisited

• Turns out, the decision is globally optimal!

40

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Where Are We?

❖ What should we do after learning an algorithm?

❖ Prove it is correct

▪ Not obvious!

▪ We will sketch the key ideas

❖ Analyze its efficiency

▪ And improve it by using a data structure we learned earlier!

41

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Correctness: Intuition

❖ Statement: all “known” vertices have the correct shortest path

▪ True initially: shortest path to start vertex has cost 0

▪ If the new vertex marked “known” also has the correct shortest path,
then by induction this statement holds

▪ Thus, when the algorithm terminates (ie, everything is “known”), we
will have the correct shortest path to every vertex

❖ Key fact we need: when we mark a vertex “known”, we won’t
discover a shorter path later!

▪ This holds only because Dijkstra’s algorithm picks the vertex with the
next shortest path-so-far

▪ The proof of this fact is by contradiction …

42

CSE332, Spring 2020L25: Dijkstra’s Algorithm

src

v

w
Correctness: Rough Idea

❖ Let v be the next vertex marked known (“added to the cloud”)

▪ The best-known path to v only contains nodes “in the cloud” and has weight w

• (we used Dijkstra’s to select this path, and we only know about paths through the cloud to
a vertex in the fringe)

▪ Assume the actual shortest path to v is different

• It must use at least one non-cloud vertex (otherwise we’d know about it)

• Let u be the first non-cloud vertex on this path

• The path weight from u to v – weight(u, v) – must be ≥0 (no negative weights)

• Thus, the total weight of the path from src to u must be <w (otherwise weight(src,u)
+ weight(u,v) > w and this path wouldn’t be shorter)

• But if weight(src,u) < w, then v would not have been picked

CONTRADICTION!!!

43

≥0

≥0

u

……

<w

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Lecture Outline

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

▪ Introduction

▪ Correctness Proof

▪ Runtime

Lecture questions: pollev.com/cse332

44

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Runtime, First Approach

dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance = 

v.known = false

start.distance = 0

while there are vertices in g

that are not known:

select vertex v with lowest cost

v.known = true

foreach unknown edge (v, u) in g:

d1 = v.distance + g.weight(v, u)

d2 = u.distance

if (d1 < d2)

u.distance = d1

u.previous = v

}

45

O(|V|)

O(|V|2)

O(|E|)
(notice each edge is
processed only once)

Total: O(|V|2+ |E|)

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Improving Asymptotic Runtime

❖ Current runtime: O(|V|2+ |E|) ∈ O(|V|2)

❖ We had a similar “problem” with toposort being O(|V|2+ |E|)

▪ Caused by each iteration looking for the next vertex to process

▪ Solved it with a queue of zero-degree vertex!

▪ But here we need:

• The lowest-cost vertex

• Ability to change costs, since they can change as we process edges

❖ Solution?

▪ A priority queue holding all unknown vertex sorted by cost

▪ Must support decreaseKey operation

• Conceptually simple, but a pain to code up

46

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Runtime, Second Approach

dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance = 

start.distance = 0

heap = buildHeap(g.vertices)

while (! heap.empty()):

v = heap.deleteMin()

foreach unknown edge (v, u) in g:

d1 = v.distance + g.weight(v, u)

d2 = u.distance

if (d1 < d2)

heap.decreaseKey(u, d1)

u.previous = v

}

47

O(|V|)

O(|V| log |V|)

O(|E| log |V|)
(|E| decreaseKey() calls)

Total: O(|V|log|V|+ |E|log|V|)

O(|V|)

O(|E|)
(each edge processed once)

CSE332, Spring 2020L25: Dijkstra’s Algorithm

Runtime as a Function of Density

❖ First approach (linear scan): O(|V|2 + |E|)

❖ Second approach (heap): O(|V|log|V|+|E|log|V|)

❖ So which is better?

▪ In a sparse graph, |E| ∈ O(|V|)

• So second approach (heap) is better? O(|E|log|V|)

▪ In a dense graph, |E| ∈ Θ(|V|2)

• So first approach (linear scan) is better? O(|E|)

❖ But: remember these are worst-case and asymptotic

▪ Heap might have worse constant factors

▪ Maybe decreaseKey is cheap, making |E|log|V| more like |E|

• It’s called rarely, or vertices don’t percolate far

48

