Fork/Join Parallelism and Its Analysis

CSE 332 Spring 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Annie Mao Howard Xiao Lucy Jiang

Chris Choi Jade Watkins Nathan Lipiarski

Ethan Knutson Khushi Chaudhari Richard Jiang

Announcements

- Quiz 3 released, due Friday
- Lecture questions: pollev.com/cse332

Learning Objectives

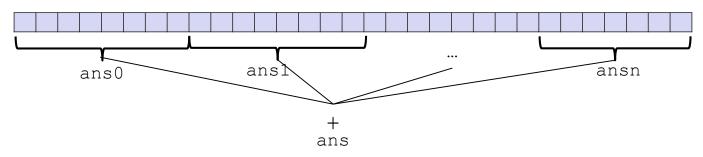
- Articulate the high-level differences between "raw" threads and the fork/join-style parallelism
- Write embarrassingly-parallel code using primitives from the ForkJoin library
- Recognize when an algorithm can use maps and reductions
 - ... and use maps and reductions to describe (parallel) algorithms
- Understand how to use work, span, speedup, and parallelism to calculate asymptotically optimal runtimes

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread
 - Asymptotically
 - Constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

Review: Many Small Chunks

- The solution: cut up our problem into many small chunks
 - We want far more chunks than the number of processors!
 - ... but this will require changing our algorithm



- 1. Portable? Yes! (Substantially) more chunks than processors
- 2. Adapts to Available Processors? Yes! Hand out chunks as you go
- 3. Load Balanced? Yes(ish)! Variation is smaller if chunks are small

Review: Abandoning java.lang.Thread

- For this specific problem (and for p3), the constants for Java's built-in Thread implementation are not great
 - Plus, there's complexity in Java's Thread that confuse rather than illuminate
- Also, the parallelism model is harder to reason about asymptotically

Naïve Thread Creation/Joining Algorithm

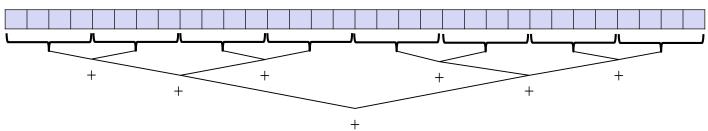
Suppose we create 1 thread to process every 1000 elements

```
int sum(int[] arr){
    ...
    int numThreads = arr.length / 1000;
    SumThread[] ts = new SumThread[numThreads];
    ...
}
```

- "Combine results" part has arr.length/1000 additions
 - Θ(N) to combine!
 - Previously, we had only 4 pieces (Θ(1) to combine)
- Will a Θ(N) algorithm to create threads/combine results be a bottleneck?

Smarter Thread Creation/Joining: Divide and Conquer!

- Divide and Conquer:
 - "Grows" the number of threads to fit the problem
 - Uses parallelism for the recursive calls
 - This style of parallel programming is called "fork/join"



- Fork/Join Phases:
- Divide the problem
 - Start with full problem at root
 - Make two new threads, halving the problem, until size is at cutoff
- 2. Combine answers as we return from recursion

Fork/Join-style Parallelism (1) of 2)

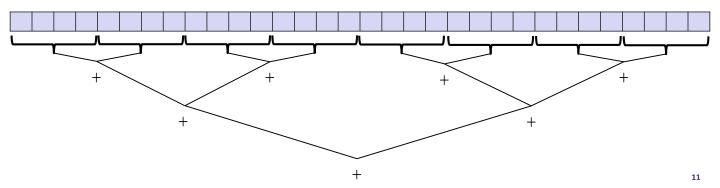
```
class SumThread extends java.lang.Thread {
  // ... member fields and constructors elided ...
 public void run() { // override: implement "main"
    if (hi - lo < SEQUENTIAL CUTOFF) {</pre>
      // Just do the calculation in this thread
      for (int i=lo; i < hi; i++)</pre>
        ans += arr[i];
    else {
      // Create two new threads to calculate the left and right sums
      SumThread left = new SumThread(arr, lo, (hi+lo)/2);
      SumThread right= new SumThread(arr, (hi+lo)/2, hi);
      left.start();
      right.start();
      // Combine their results
      left.join(); // don't move this up a line (why?)
      right.join();
      ans = left.ans + right.ans;
```

Fork/Join-style Parallelism (2 of 2)

- The computation and the result-combining are both in parallel
 - Using recursive divide-and-conquer makes this natural
 - Easier to write and more efficient asymptotically!

Fork/Join-style Parallelism Really Works!

- The key is in parallelizing both the executor-creation and the result-combining phases
 - If enough processors, runtime is height of the tree: O(log n)
 - Optimal and exponentially faster than sequential O(n)
 - Relies on operations being associative (like +) (a+b)+c = a+(b+c)
- We'll write all our parallel algorithms in this style
 - But using a special library engineered for this style



Being Pragmatic #1: Performance Tuning

- Wait until computer has more processors ;)
 - Communication overhead may still dominate at 4 processors, but this configuration is rare for servers (circa 2020)
 - attu6 has 4 CPUs with 14 cores each = 56 "processors"

- Beware memory-hierarchy issues!
 - Won't focus on this, but crucial for parallel performance

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread
 - Asymptotically
 - Constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

Poll Everywhere

pollev.com/cse332

- Assume that thread creation and joining are expensive. Which of the following optimizations might improve our constants?
 - 1. Use a cutoff, after which computation proceeds sequentially
 - 2. Somehow create fewer threads
 - 3. Somehow reuse threads when they're done
- A. Cutoff only
- B. Cutoff + Fewer Threads
- c. Cutoff + Thread Reuse
- D. Cutoff + Fewer Threads + Thread Reuse
- E. I'm not sure ...

Being Pragmatic #2: Constants Matter

- In theory, can divide down to single elements, do all the resultcombining in parallel, and get optimal speedup
 - Total time: O(n / numProcessors + log n)
- In practice, thread creation/joins eat into the savings, so:
 - 1. Use a cutoff, after which computation proceeds sequentially
 - Cutoff value depends on type of computation; 500-1000 is a good start
 - Eliminates almost all the recursive thread creation (bottom levels of tree)
 - Exactly like QuickSort switching to InsertionSort, but more important here
 - 2. Do not create *two* recursive threads; create one thread and do the other piece of work "yourself"
 - Halves the number of threads created (?!?!)

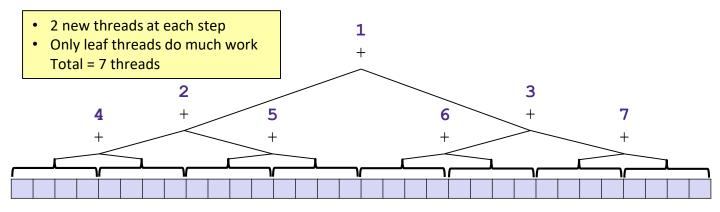
Halving the Created Threads: Code

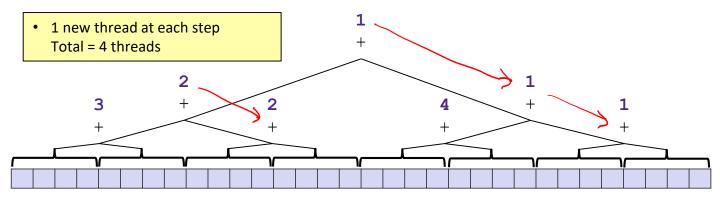
- If the language had built-in support for fork/join-style parallelism, this hand-optimization would be unnecessary
- But the library we're using expects you to do it yourself
 - ... and the difference is surprisingly substantial
- Again: no difference in theory, "only" the constants

run() is a nomal function call! Execution won't proceed until it completes

```
Do this instead:
// Don't do this:
SumThread left =
                               SumThread left = ...
SumThread right = ...
                               SumThread right = ...
left.start();
                               left.start();
right.start();
                               right.run();
left.join();
                               left.join();
right.join(); <
                               ¼/ no right.join() needed
                               ans = left.ans + right.ans;
ans = left.ans + right.ans;
```

Halving the Created Threads: Pictorially





Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread
 - Asymptotically
 - Constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

Finally! The ForkJoin Library

- Even using fork/join-style code, java.lang.Thread is still too "heavyweight"
 - Constant factors, especially space overhead
 - Creating 20,000 Java threads just a bad idea ⊗
- So use the ForkJoin Library instead
 - Introduced in Java 8 (2014)
 - Similar libraries available for other languages
 - C/C++: Cilk (inventors), Intel's Thread Building Blocks
 - C#: Task Parallel Library
 - ...
 - Its implementation is a fascinating but advanced topic

Thread -> ForkJoin: Terminology

Java Built-in Threads	ForkJoin Library
Subclass Thread	Subclass RecursiveTask <v></v>
Override run ()	Override compute()
Call start() to begin parallel computation	Call $fork()$ to begin parallel computation
Return results via member fields (eg, ans)	Return results via return value (ie, an instance of ∨)
Call join (), then check its "returned" member field	Call join (), then check its return value
Halve created threads by calling run () directly	Halve created threads by calling compute() directly
Begin recursion with top-level call to run() (instead of start())	Begin recursion by creating a ForkJoinPool and calling its invoke()

Fork/Join-style Parallelism with ForkJoin (1 of 2)

```
class SumTask extends RecursiveTask<Integer> {
  No output params, Returns directly! // just the "input" arguments!
  int lo; int hi; int[] arr;
 protected Integer compute() { // override: implement "main"
    if (hi - lo < SEQUENTIAL CUTOFF)</pre>
      // Just do the calculation in this thread
      int ans = 0; // local variable instead of a member field
      for (int i=lo; i < hi; i++)</pre>
      ans += arr[i];
      return ans; // direct return of answer
    } else {
      // Create ONE new thread to calculate the left sum
      SumTask left = new SumTask(arr, lo, (hi+lo)/2);
      SumTask right = new SumTask(arr, (hi+lo)/2, hi);
      left.fork(); // create a thread and call its compute()
      int rightAns = right.compute(); // call compute() directly
      // Combine results
      int leftAns = left.join();
      return leftAns + rightAns;
```

Fork/Join-style Parallelism with ForkJoin (2 of 2)

Being Pragmatic #2: Performance Tuning the Library

- Sequential threshold
 - Library documentation recommends doing approximately 100-5000 basic operations in each "piece" of your algorithm
- ForkJoin library needs to "warm up"
 - May see slow results before JVM re-optimizes the library internals
 - Put computations in a loop to see the "long-term benefit"

Summary: Parallelism

- Parallelism: increasing efficiency/decreasing total runtime
- Concurrency: correctly accessing shared resources
 - They intersect when parallel computations access shared resources
- Model: shared memory with explicit threads:
 - Threads are the minimum fields necessary to represent "computation": a program counter and a stack
 - Everything else is shared (eg, static variables, heap)
- Threading:
 - run()/compute() are "regular" function calls, but start()/fork()
 create a new thread and then call run()/compute()
 - Parallelizing many small chunks of work is portable, adaptable, and load-balancable

Summary: Fork/Join Parallelism

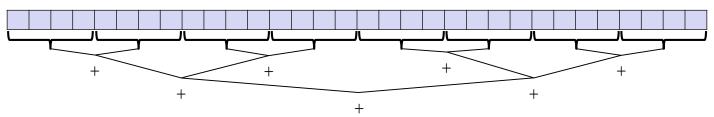
- Fork/Join Parallelism is a model that grows the parallelism to fit the problem size using recursion
- The ForkJoin library that cleanly enables this model
 - You still need to manually specify the sequential cutoff
 - Halving the created threads also requires manual intervention

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread
 - Asymptotically
 - Constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

A Common Pattern

- * Summing went from O(n) sequential to $O(\log n)$ parallel
 - Assuming a lot of processors and very large n
 - Exponential speed-up in theory: n / log n grows exponentially)



- * Any solution which can merge two subsolutions in O(1) time has this property! Usually just need to "plug in" 2 parts:
 - How to compute the result at the cut-off (Parallel-Sum: Iterate through sequentially and add up)
 - How to merge results (Parallel-Sum: Just add 'left' and 'right' results)

Examples

- ❖ Parallelization Pattern #1:

- How to merge results
- Assume the input is an array; how would we do the following?
 - 1. Maximum or minimum element

How to compute result at the 'cut-off'

- Is there an element satisfying some property (e.g., is there a 17)?
- 3. Left-most element satisfying some property (e.g., first 17)
- 4. Smallest rectangle encompassing a number of points
- 5. Counts; for example, number of strings that start with a vowel
- 6. Are these elements in sorted order?

A Common Pattern: Reductions

- This class of computations are called reductions
 - We 'reduce' a large array of data to a single final result
 - Intermediate results must be combined with an associative operator
 - Examples: max, count, leftmost, rightmost, sum, product, ...
- Intermediate and final results can be "aggregates": arrays or multi-field objects
 - Example: histogram from a much larger array of test results
- Some things are inherently sequential
 - Example: How we process arr[i] depends entirely on the result of DAG looks like a linked list. processing arr[i-1]

for i from 1 to n

arr [i] = arr [i-1] +fl)

Another Common Pattern: Maps

- A map transforms each element of a collection independently, creating a new-but-same-sized collection of modified elements
 - No combining results
- Example: Vector addition

```
int[] vectorAdd(int[] arr1, int[] arr2) {
   assert(arr1.length == arr2.length);

result = new int[arr1.length];
FORALL (i=0; i < arr1.length; i++) {
   result[i] = arr1[i] + arr2[i];
   }
   return result;
}</pre>
```

- Using a map? Only need to "plug in" one part:
 - How to map element E to transformed E'
 - (Vector-add: generate result[i] from arr1[i])

Maps in the ForkJoin Library (1 of 2)

- Many small tasks still helps with load balancing
 - Maybe not for vector-add, but definitely for compute-intensive maps
 - The forking is O(log n); theoretically other approaches are O(1)

```
class VectorAdd extends RecursiveAction
  // input: arguments
  int lo; int hi; int[] res; int[] v1; int[] v2;
  protected void compute() {
    if(hi - lo < SEQUENTIAL CUTOFF) {</pre>
      for(int i=lo; i < hi; i++)</pre>
        res[i] = v1[i] + v2[i];
    } else {
      int mid = (hi+lo)/2;
      VectorAdd left = new VectorAdd(lo, mid, res, v1, v2);
      VectorAdd right= new VectorAdd(mid, hi, res, v1, v2);
      left.fork();
      right.compute();
      left.join();
```

Maps in the ForkJoin Library (2 of 2)

```
class VectorAdd extends RecursiveAction {
   // input: arguments
   int lo; int hi; int[] res; int[] v1; int[] v2;

   protected void compute() { ... } // override: implement "main"
}
```

```
static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
   assert (arr1.length == arr2.length);

   // Use ans as an "output argument" instead of looking at the
   // top-level compute()'s return value (which is void).
   int[] ans = new int[arr1.length];

POOL.invoke(new VectorAdd(0, arr.length, ans, arr1, arr2);
   return ans;
}
```

Map and Reduce in the ForkJoin Library

- Map (vector-add)
 - VectorAdd extended RecursiveAction
 - Result was an output parameter; nothing returned from compute ()
- Reduce (parallel-sum):
 - SumTask extended RecursiveTask
 - Result directly returned from compute ()
- ... but it doesn't have to be this way
 - Map could've used RecursiveTask to return an array
 - Reduce could've used RecursiveAction and returned result as an output parameter

Maps and Reductions, Generally

- Maps and reductions are the "workhorses" of parallel programming
 - By far, the two most important and common patterns
 - Two more-advanced patterns in next lecture
- Remember the learning objectives!
 - Recognize when an algorithm can use maps and reductions
 - Use maps and reductions to describe (parallel) algorithms
- Goal: programming them becomes "trivial"
 - Exactly like sequential for-loops seem second-nature nowadays

Digression: MapReduce on clusters

- You may have heard of Google's "map/reduce"
 - Or the open-source version Hadoop
- Performs maps and reduces using many machines
 - System takes distributes input data and manages fault tolerance
 - You just write code to map one element and reduce elements to a combined result
- Separates how the recursive divide-and-conquer "frame" from the computation to perform
 - An old idea in higher-order functional programming, transferred to large-scale distributed computing
 - Complementary approach to declarative queries for databases

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread
 - Asymptotically
 - Constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs

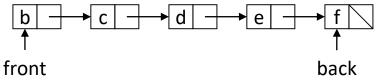
 \$\begin{align*}
 \begin{align*}
 \be
- Asymptotic Analysis for Fork/Join-style Parallelism

Parallelized Computation on Trees

- Maps and reductions work on trees
 - Divide-and-conquer each child rather than array sub-ranges
 - Correct for unbalanced trees, but won't get much speed-up unless tree is balanced
- Example: minimum in an <u>unsorted</u>-but-balanced binary tree
 - $O(\log n)$ time given enough processors
- How to do the sequential cut-off?
 - Store number-of-descendants at each node (easy to maintain)
 - Or could approximate it with, e.g., AVL-tree height

Parallelized Computation on Linked Lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - Example: Sum all elements of a linked list



- Parallelism still helps with expensive per-element operations
- Once again, data structures matter!
 - Balanced trees allow faster access to all the data: O(log n) vs. O(n)
 - Trees and lists have the same flexibility compared to arrays (eg, inserting an item in the middle of the list)

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread
 - Asymptotically
 - Constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

Analyzing Parallel Algorithms

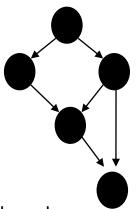
- How to measure efficiency?
 - Want asymptotic bounds
 - Want an analysis that's independent of a specific number of processors
- Fork/Join parallelism gets asymptotically optimal runtime for the available number of processors
 - So we can analyze algorithms assuming this guarantee

Modelling Fork/Join Parallelism with DAGs

- A program execution using can be modeled as a DAG
 - Nodes: Pieces of work
 - Edges: Source must finish before destination can start

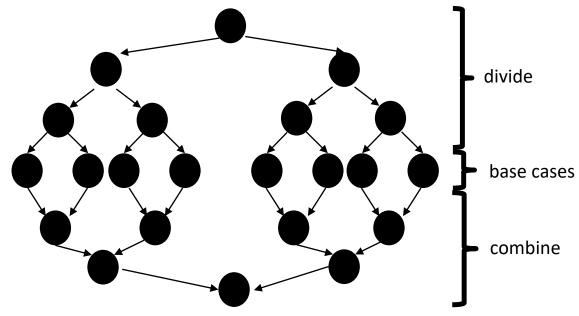
A directed acyclic graph (DAG) is:

- A graph that is directed (edges have direction/arrows)
- And whose edges do not create a cycle (ability to trace a path that starts and ends at the same node)
- A fork makes two outgoing edges:
 - New thread
 - Continuation of current thread
- A join takes two incoming edges
 - The final node of the joined thread
 - The computation that just finished in the current thread



Our Simple Examples

- fork and join are very flexible, but maps and reductions use them in a very basic way
 - A (perfect) tree, on top of an upside-down (perfect) tree



Aside: More Interesting DAGs?

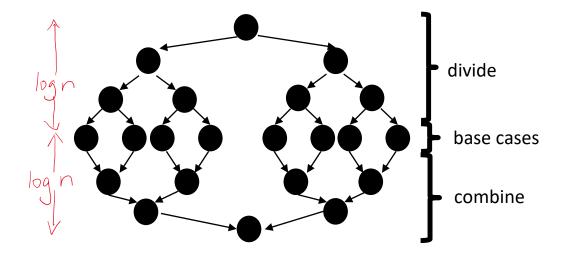
- The execution DAGs are not always this simple
 - Example: combining results might so expensive that we parallelize it.
 Then each node in the inverted tree would expand into another set of nodes for that parallel computation

Definitions: Work and Span

- Let T_P be the running time if there are P processors available
- Two important definitions:
 - Work: How long it would take with 1 processor (ie, T₁)
 - Just "sequentialize" the recursive forking
 - Cumulative work that all processors must complete
 - **Span**: How long it would take with infinitely many processors (ie, T_{∞})
 - The hypothetical ideal; aka "critical path length" or "computational depth"
 - This is the longest "dependence chain" in the computation
 - Example: O(log n) for summing an array
 - Notice how having >n/2 processors doesn't reduce the span

Our Simple Examples + Our Definitions

- * In this context, the span (T_{∞}) is:
 - The longest dependence-chain; i.e., longest 'branch' in parallel 'tree'
 - Example: O(log n) for summing an array
 - We halve the data down to our sequential cut-off, then add back together
 - 2 * log n steps, O(1) time for each: O(log n)



Work and Span in Fork/Join-style DAGs

- * **Span** (T_{∞}) = sum of runtime of all nodes in the DAG's most-expensive path
 - Note: costs are on the nodes not the edges
 - O(log n) for simple maps and reductions
- ❖ Work (T₁) = sum of runtime of all nodes in the DAG
 - Any topological sort is a legal execution
 - O(n) for simple maps and reductions

More Definitions: Speed-up and Parallelism

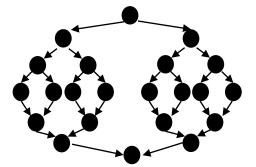
- * Speed-up, using P processors: T_1/T_P $T_4 = 50$ \$ \$\$\frac{1}{4} = 50\$\$
- If speed-up is P as we vary P, we call it perfect linear speed-up
 - Perfect linear speed-up means doubling P halves running time

 - Usually our goal, but hard to get in practice if T4=25s in previously, would've had perfect linear speed-up
- ❖ Parallelism: T₁ / T₂
 - Parallelism is the maximum possible speed-up; the point at which H' To= 5g parallelism=20 adding processors doesn't help
 - That point depends on the span

Parallel algorithms attempt to decrease span without increasing work too much

Obtaining Optimality for T_P

- ❖ What is the asymptotically optimal T_P, for any value of P?
 - (as usual, we ignore memory-hierarchy issues; i.e. caching)
- ❖ We know T_p is greater than or equal to:
 - **T**₁ / P (why?)
 - $\blacksquare T_{\infty}$ (why?)



So an asymptotically optimal execution must be:

$$O((T_1/P) + T_{\infty})$$

First term dominates for small P, second for large P

Optimal T_P: Thanks, ForkJoin library!

- The ForkJoin library gives an expected-time guarantee of asymptotically optimal!
 - "Expected time" because it flips coins when scheduling
- To obtain this guarantee, our job as ForkJoin library users is to make all the nodes in our execution DAG small-ish and approximately equal
- In exchange, the library-writers:
 - Assign work to avoid idling; we can ignore scheduling issues
 - Keep constant factors low
 - Give the expected-time optimal guarantee (assuming the library user did their job): $T_P = O((T_1 / P) + T_{\infty})$