
CSE 332: Data Structures & Parallelism

Lecture 23: Disjoint Sets

Ruth Anderson

Autumn 2020

12/07/2020

Aside: Union-Find aka Disjoint Set ADT

• Union(x,y) – take the union of two sets named x and y

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}

– Union(5,1)

Result: {3,5,7,1,6}, {4,2,8}, {9},

To perform the union operation, we replace sets x and y by (x  y)

• Find(x) – return the name of the set containing x.

– Given sets: {3,5,7,1,6}, {4,2,8}, {9},

– Find(1) returns 5

– Find(4) returns 8

• We can do Union in constant time.

• We can get Find to be amortized constant time

(worst case O(log n) for an individual Find operation).

2

12/07/2020 3

Implementing the DS ADT
• n elements,

Total Cost of: m finds,  n-1 unions

• Target complexity: O(m+n)

i.e. O(1) amortized

• O(1) worst-case for find as well as union would be great, but…

Known result: both find and union cannot be done in worst-case

O(1) time

can there be

more unions?

Data Structure for the DS ADT

• Observation: trees let us find many elements given one root…

• Idea: if we reverse the pointers (make them point up from child

to parent), we can find a single root from many elements…

• Idea: Use one tree for each equivalence class. The name of

the class is the tree root.

12/07/2020 4

12/07/2020 5

Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several

Unions:

Roots are the names of each set.

12/07/2020 6

Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7

12/07/2020 7

Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)

12/07/2020 8

Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

Up[x] = 0 means

x is a root.

12/07/2020 9

Implementation

int Find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:

12/07/2020 10

A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:

:

Find(1) n steps!!

Union(x,y) – “point y to x”

12/07/2020 11

Now this doesn’t look good 

Can we do better? Yes!

1. Improve union so that find only takes Θ(log n)
• Union-by-size

• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even better!
• Path compression

• Reduces complexity to almost Θ(m + n)

Weighted Union/Union by Size

• Weighted Union

– Always point the smaller (total # of nodes) tree to the root of
the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

12/02/2019 12

Example Again

1 2 3 n

1

2 3 n

W-Union(2,1)

1

2

3

n

W-Union(3,2)

W-Union(n,2)

…

… :

:

1

2

3 n

…

Find(1) constant time
…

12/02/2019 13

Analysis of Weighted Union

With weighted union an up-tree of height h has

weight at least 2h.

• Proof by induction

– Basis: h = 0. The up-tree has one node, 20 = 1

– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight

up-tree of height h

formed by

weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted

union

Induction

hypothesis

W(T) > 2h-1 + 2h-1 = 2h

12/02/2019 14

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be

its height.

n > 2h

log2 n > h

• Find(x) in tree T takes O(log n) time.

– Can we do better?

12/02/2019 15

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

12/02/2019 16

Example of Worst Cast (cont’)

After n/2 + n/4 + …+ 1 Weighted Unions:

Find
If there are n = 2k nodes then the longest

path from leaf to root has length k.

log2n

12/02/2019 17

Array Implementation

1

2

3

45

6

7
2 41

-1

2

1 -1

1

7 7 5 -1

4

1 2 3 4 5 6 7

up
weight

12/02/2019 18

Weighted Union

W-Union(i,j : index){

//i and j are roots

wi := weight[i];

wj := weight[j];

if wi < wj then

up[i] := j;

weight[j] := wi + wj;

else

up[j] :=i;

weight[i] := wi +wj;

}

new runtime for Union():

new runtime for Find():

runtime for m finds and n-1 unions =

12/02/2019 19

Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,

simply store –size

[Read section 8.4]

12/02/2019 20

How about Union-by-height?

• Can still guarantee O(log n) worst case depth

Left as an exercise!

• Problem: Union-by-height doesn’t combine

very well with the new find optimization

technique we’ll see next

12/02/2019 21

12/07/2020 22

Now this doesn’t look good 

Can we do better? Yes!

1. DONE: Improve union so that find only takes
Θ(log n)

• Union-by-size

• Reduces complexity to Θ(m log n + n)

2. NOW: Improve find so that it becomes even
better!

• Path compression

• Reduces complexity to almost Θ(m + n)

Path Compression

• On a Find operation point all the nodes on the
search path directly to the root.

1

2

3

45

6

7

PC-Find(3)

8 9

10

12/02/2019 23

Path Compression

• On a Find operation point all the nodes on the
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

12/02/2019 24

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

12/02/2019 25

Self-Adjustment Works

PC-Find(x)

x

12/02/2019 26

Path Compression Find

PC-Find(i : index) {

r := i;

while up[r]  -1 do //find root//

r := up[r];

if i  r then //compress path//

k := up[i];

while k  r do

up[i] := r;

i := k;

k := up[k]

return(r)

}

12/02/2019 27

Path Compression: Code

int Find(Object x) {

// x had better be in

// the set!

int xID = hTable[x];

int i = xID;

// Get the root for

// this set

while(up[xID] != -1)

{

xID = up[xID];

}

// Change the parent for

// all nodes along the path

while(up[i] != -1) {

temp = up[i];

up[i] = xID;

i = temp;

}

return xID;

}

(New?) runtime for Find:

12/02/2019 28

Interlude: A Really Slow Function

Ackermann’s function is a really big function
A(x, y) with inverse (x, y) which is really small

How fast does (x, y) grow?

(x, y) = 4 for x far larger than the number of
atoms in the universe (2300)

 shows up in:
– Computation Geometry (surface complexity)

– Combinatorics of sequences

12/02/2019 29

A More Comprehensible Slow Function

log* x = number of times you need to compute

log to bring value down to at most 1

E.g. log* 2 = 1

log* 4 = log* 22 = 2

log* 16 = log* 222 = 3 (log log log 16 = 1)

log* 65536 = log* 2222
= 4 (log log log log 65536 = 1)

log* 265536 = …………… = 5

Take this: (m,n) grows even slower than log* n !!

12/02/2019 30

Complex Complexity of

Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union

and find operations on a set of n elements have

worst case complexity of O(p  (p, n))

For all practical purposes this is amortized constant

time:

O(p  4) for p operations!

• Complex analysis

12/02/2019 31

Disjoint Union / Find

with Weighted Union and PC

• Worst case time complexity for a W-Union is

O(1) and for a PC-Find is O(log n).

• Time complexity for m  n operations on n

elements is O(m log* n) where log* n is a

very slow growing function.

– Log * n < 7 for all reasonable n. Essentially

constant time per operation!

• Using “ranked union” gives an even better

bound theoretically.

12/02/2019 32

Amortized Complexity

• For disjoint union / find with weighted union and path

compression.

– average time per operation is essentially a constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but over time the average

cost per operation is not.

12/02/2019 33

