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Aside: Union-Find aka Disjoint Set ADT

• Union(x,y) – take the union of two sets named x and y

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}

– Union(5,1)

Result: {3,5,7,1,6}, {4,2,8}, {9}, 

To perform the union operation, we replace sets x and y by  (x  y)

• Find(x) – return the name of the set containing x.

– Given sets: {3,5,7,1,6}, {4,2,8}, {9}, 

– Find(1) returns 5

– Find(4) returns 8

• We can do Union in constant time. 

• We can get Find to be amortized constant time 

(worst case O(log n) for an individual Find operation).
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Implementing the DS ADT
• n elements, 

Total Cost of: m finds,  n-1 unions

• Target complexity: O(m+n)

i.e. O(1) amortized

• O(1) worst-case for find as well as union would be great, but…

Known result: both find and union cannot be done in worst-case 

O(1) time

can there be

more unions?



Data Structure for the DS ADT

• Observation:  trees let us find many elements given one root…

• Idea:  if we reverse the pointers (make them point up from child 

to parent), we can find a single root from many elements…

• Idea:  Use one tree for each equivalence class.  The name of 

the class is the tree root.
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Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several

Unions:

Roots are the names of each set.
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Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7
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Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)
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Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1   2    3    4   5    6   7

up

Up[x] = 0 means

x is a root.
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Implementation

int Find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
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A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:

:

Find(1)   n steps!!

Union(x,y) – “point y to x”
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Now this doesn’t look good 

Can we do better?     Yes!

1. Improve union so that find only takes Θ(log n)
• Union-by-size

• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even better!
• Path compression

• Reduces complexity to almost Θ(m + n)



Weighted Union/Union by Size

• Weighted Union

– Always point the smaller (total # of nodes) tree to the root of 
the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41
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Example Again

1 2 3 n

1

2 3 n

W-Union(2,1)

1

2

3

n

W-Union(3,2)

W-Union(n,2)

…

… :

:

1

2

3 n

…

Find(1)   constant time
…
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Analysis of Weighted Union

With weighted union an up-tree of height h has 

weight at least 2h.

• Proof by induction

– Basis: h = 0. The up-tree has one node, 20 = 1

– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight

up-tree of height h

formed by

weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted

union

Induction

hypothesis

W(T) > 2h-1 + 2h-1 = 2h
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Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union.  Let h be 

its height.

n > 2h

log2 n > h

• Find(x) in tree T takes O(log n) time.

– Can we do better?
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Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
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Example of Worst Cast (cont’)

After n/2 + n/4 + …+ 1 Weighted Unions:

Find
If there are n = 2k nodes then the longest

path from leaf to root has length k.

log2n
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Array Implementation

1

2

3

45

6

7
2 41

-1

2

1 -1

1

7 7 5 -1

4

1   2   3  4  5   6   7  

up
weight
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Weighted Union

W-Union(i,j : index){

//i and j are roots

wi := weight[i];

wj := weight[j];

if wi < wj then

up[i] := j;

weight[j] := wi + wj;

else

up[j] :=i;

weight[i] := wi +wj;

}

new runtime for Union():

new runtime for Find():

runtime for m finds and n-1 unions = 
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Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,

simply store –size

[Read section 8.4]
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How about Union-by-height?

• Can still guarantee O(log n) worst case depth

Left as an exercise!

• Problem: Union-by-height doesn’t combine 

very well with the new find optimization 

technique we’ll see next
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Now this doesn’t look good 

Can we do better?     Yes!

1. DONE: Improve union so that find only takes 
Θ(log n)

• Union-by-size

• Reduces complexity to Θ(m log n + n)

2. NOW: Improve find so that it becomes even 
better!

• Path compression

• Reduces complexity to almost Θ(m + n)



Path Compression

• On a Find operation point all the nodes on the 
search path directly to the root.

1

2

3

45

6

7

PC-Find(3)

8 9

10
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Path Compression

• On a Find operation point all the nodes on the 
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910
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Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity
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Self-Adjustment Works

PC-Find(x)

x
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Path Compression Find

PC-Find(i : index) {

r := i;

while up[r]  -1 do //find root//

r := up[r];

if i  r then  //compress path//

k := up[i];

while k  r do

up[i] := r;

i := k;

k := up[k]

return(r)

}
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Path Compression: Code

int Find(Object x) {

// x had better be in 

// the set!

int xID = hTable[x];

int i = xID;

// Get the root for 

// this set

while(up[xID] != -1) 

{

xID = up[xID];

}

// Change the parent for

// all nodes along the path  

while(up[i] != -1) {

temp = up[i];

up[i] = xID;

i = temp;

}

return xID;

}

(New?) runtime for Find:
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Interlude: A Really Slow Function

Ackermann’s function is a really big function 
A(x, y) with inverse (x, y) which is really small

How fast does (x, y) grow?   

(x, y) = 4 for x far larger than the number of 
atoms in the universe (2300)

 shows up in:
– Computation Geometry (surface complexity)

– Combinatorics of sequences
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A More Comprehensible Slow Function

log* x = number of times you need to compute

log to bring value down to at most 1

E.g. log* 2 = 1

log* 4 = log* 22 = 2

log* 16 = log* 222 = 3           (log log log 16 = 1)

log* 65536 = log* 2222
= 4    (log log log log 65536 = 1)

log* 265536 = …………… = 5

Take this: (m,n) grows even slower than log* n   !!
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Complex Complexity of 

Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union 

and find operations on a set of n elements have 

worst case complexity of O(p  (p, n))

For all practical purposes this is amortized constant 

time:

O(p  4) for p operations!

• Complex analysis
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Disjoint Union / Find

with Weighted Union and PC

• Worst case time complexity for a W-Union is 

O(1) and for a PC-Find is O(log n). 

• Time complexity for m  n operations on n 

elements is O(m log* n)  where log* n is a 

very slow growing function. 

– Log * n < 7 for all reasonable n. Essentially 

constant time per operation!

• Using “ranked union” gives an even better 

bound theoretically.
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Amortized Complexity

• For disjoint union / find with weighted union and path 

compression. 

– average time per operation is essentially a constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but over time the average 

cost per operation is not.  
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