
CSE 332: Data Structures & Parallelism

Lecture 20: Topological Sort / Graph Traversals

Ruth Anderson

Autumn 2020

Today

• Graphs

– Topological Sort

– Graph Traversals

11/23/2020 2

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order

such that if no vertex appears before any other vertex that has

an edge to it

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

11/23/2020

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Disclaimer: Do not use for official advising purposes!

(Implies that CSE 332 is a pre-req for CSE 312 – not true)

3

11/23/2020

1

3

4

2

0

Valid Topological

Sorts:

4

Questions and comments

• Why do we perform topological sorts only on DAGs?

• Is there always a unique answer?

• What DAGs have exactly 1 answer?

• Terminology: A DAG represents a partial order and a topological

sort produces a total order that is consistent with it

11/23/2020 5

Topological Sort Uses

• Figuring out how to finish your degree

• Computing the order in which to recompute cells in a

spreadsheet

• Determining the order to compile files using a Makefile

• In general, taking a dependency graph and coming up with an

order of execution

11/23/2020 7

A First Algorithm for Topological Sort
1. Label (“mark”) each vertex with its in-degree

– Think “write in a field in the vertex”

– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of 0

b) Output v and conceptually remove it from the graph

c) For each vertex w adjacent to v (i.e. w such that (v,w) in E),

decrement the in-degree of w

1

3

4

2

0

1

2

3

4

2

4 /

4

/

3 /

0 3 /

/

In-degree

11/23/2020 8

Example Output:

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

9

Example Output: 126

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

10

Example Output: 126

142

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

11

Example Output: 126

142

143

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 0 0 0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

12

Example Output: 126

142

143

311

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 0 0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

13

Example Output: 126

142

143

311

331

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 0 0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

14

Example Output: 126

142

143

311

331

332

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0

0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

15

Example Output: 126

142

143

311

331

332

312

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0

0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

16

Example Output: 126

142

143

311

331

332

312

341

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0

0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

17

Example Output: 126

142

143

311

331

332

312

341

351

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0

0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

18

Example
Output: 126

142

143

311

331

332

312

341

351

333

352

440

11/23/2020

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0

0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

19

A couple of things to note

• Needed a vertex with in-degree of 0 to start

– No cycles

• Ties between vertices with in-degrees of 0 can be broken

arbitrarily

– Potentially many different correct orders

11/23/2020 20

Topological Sort: Running time?

11/23/2020

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){

v = findNewVertexOfDegreeZero();

put v next in output

for each w adjacent to v

w.indegree--;

}

21

Doing better

The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack, queue,

box, table, or something

– Order we process them affects output but not correctness or

efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v = dequeue()

b) Output v and remove it from the graph

c) For each vertex w adjacent to v (i.e. w such that (v,w) in E),

decrement the in-degree of w, if new degree is 0, enqueue it

11/23/2020 23

Topological Sort(optimized): Running time?

labelAllAndEnqueueZeros();

for(ctr=0; ctr < numVertices; ctr++){

v = dequeue();

put v next in output

for each w adjacent to v {

w.indegree--;

if(w.indegree==0)

enqueue(w);

}

}

11/23/2020 24

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all

nodes reachable (i.e., there exists a path) from v

– Possibly “do something” for each node (an iterator!)

• E.g. Print to output, set some field, etc.

Related Questions:

• Is an undirected graph connected?

• Is a directed graph weakly / strongly connected?

– For strongly, need a cycle back to starting node

Basic idea:

– Keep following nodes

– But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

11/23/2020 26

Graph Traversal: Abstract Idea

traverseGraph(Node start) {

Set pending = emptySet();

pending.add(start)

mark start as visited

while(pending is not empty) {

next = pending.remove()

for each node u adjacent to next

if(u is not marked) {

mark u

pending.add(u)

}

}

}

11/23/2020 27

Running time and options

• Assuming add and remove are O(1), entire traversal is O(|E|)

• Use an adjacency list representation

• The order we traverse depends entirely on how add and remove

work/are implemented

– Depth-first graph search (DFS): a stack

– Breadth-first graph search (BFS): a queue

• DFS and BFS are “big ideas” in computer science

– Depth: recursively explore one part before going back to the

other parts not yet explored

– Breadth: Explore areas closer to the start node first

11/23/2020 28

Recursive DFS, Example : trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

11/23/2020

A

B

D E

C

F

HG

DFS(Node start) {

mark and “process”(e.g. print) start

for each node u adjacent to start

if u is not marked

DFS(u)

}

Order processed: A, B, D, E, C, F, G, H

• Exactly what we called a “pre-order traversal” for trees

• The marking is not needed here, but we need it to support arbitrary

graphs , we need a way to process each node exactly once

29

DFS with a stack, Example: trees

11/23/2020

A

B

D E

C

F

HG

DFS2(Node start) {

initialize stack s to hold start

mark start as visited

while(s is not empty) {

next = s.pop() // and “process”

for each node u adjacent to next

if(u is not marked)

mark u and push onto s

}

}

Order processed:

• A different but perfectly fine traversal

30

BFS with a queue, Example: trees

11/23/2020

A

B

D E

C

F

HG

BFS(Node start) {

initialize queue q to hold start

mark start as visited

while(q is not empty) {

next = q.dequeue()// and “process”

for each node u adjacent to next

if(u is not marked)

mark u and enqueue onto q

}

}

Order processed:

• A “level-order” traversal

32

DFS/BFS Comparison

Breadth-first search:

• Always finds shortest paths, i.e., “optimal solutions

– Better for “what is the shortest path from x to y”

• Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree

of height h, 2h nodes in queue)

Depth-first search:

• Can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d then

DFS stack never has more than d*p elements

A third approach: Iterative deepening (IDDFS):

– Try DFS but don’t allow recursion more than K levels deep.

– If that fails, increment K and start the entire search over

• Like BFS, finds shortest paths. Like DFS, less space.

11/23/2020 34

Saving the path

• Our graph traversals can answer the “reachability question”:

– “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?

– Like getting driving directions rather than just knowing it’s

possible to get there!

• A: Like this:

– Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.path field to be u)

– When you reach the goal, follow path fields backwards to

where you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at

each node instead

11/23/2020 35

Example using BFS

11/23/2020

Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Austin

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique

Chicago

Austin

36

Example using BFS

11/23/2020

Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Austin

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique

Chicago

Austin

1

1

1

2

3

0

37

