
11/22/2020

1

A First Algorithm for Topological Sort
1. Label (“mark”) each vertex with its in-degree

– Think “write in a field in the vertex”
– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v with labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), 

decrement the in-degree of w

1

3
4

2

0

1

2

3

4

2

4 /

4

/

3 /

0 3 /

/

In-degree

11/23/2020 8

Topological Sort: Running time?

11/23/2020

labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}

21

Doing better

The trick is to avoid searching for a zero-degree node every time!
– Keep the “pending” zero-degree nodes in a list, stack, queue, 

box, table, or something
– Order we process them affects output but not correctness or 

efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), 

decrement the in-degree of w, if new degree is 0, enqueue it

11/23/2020 23

Topological Sort(optimized): Running time?
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0) 

enqueue(w);
}

}

11/23/2020 24



11/22/2020

2

DFS with a stack, Example: trees

11/23/2020

A

B

D E

C

F

HG

DFS2(Node start) {
initialize stack s to hold start
mark start as visited
while(s is not empty) {

next = s.pop() // and “process”
for each node u adjacent to next
if(u is not marked)

mark u and push onto s
}

}

Order processed: 
• A different but perfectly fine traversal

30

BFS with a queue, Example: trees

11/23/2020

A

B

D E

C

F

HG

BFS(Node start) {
initialize queue q to hold start
mark start as visited
while(q is not empty) {

next = q.dequeue()// and “process”
for each node u adjacent to next
if(u is not marked)

mark u and enqueue onto q
}

}

Order processed: 
• A “level-order” traversal

32

Saving the path

• Our graph traversals can answer the “reachability question”:
– “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?
– Like getting driving directions rather than just knowing it’s 

possible to get there!

• A: Like this: 
– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u)

– When you reach the goal, follow path fields backwards to 
where you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at 
each node instead

11/23/2020 35

Example using BFS

11/23/2020

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

36


