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Today

• Sorting

– Comparison sorting
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Introduction to sorting

• Stacks, queues, priority queues, and dictionaries all focused on 

providing one element at a time

• But often we know we want “all the data items” in some order

– Anyone can sort, but a computer can sort faster

– Very common to need data sorted somehow

• Alphabetical list of people

• Population list of countries

• Search engine results by relevance

• …

• Different algorithms have different asymptotic and constant-

factor trade-offs

– No single ‘best’ sort for all scenarios

– Knowing one way to sort just isn’t enough

10/28/2020 3



More reasons to sort

General technique in computing: 

Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find an element in logarithmic time

Whether the benefit of the preprocessing depends on

– How often the data will change

– How much data there is
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The main problem, stated carefully
For now we will assume we have n comparable elements in an array 

and we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

• Given keys a & b, what is their relative ordering?  <, =, >?

• Ex: keys that implement Comparable or have a Comparator that can 

handle them

Effect:
– Reorganize the elements of A such that for any i and j, 

if i < j then A[i]  A[j]

– Usually unspoken assumption: A must have all the same data it started with

– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

10/28/2020 5



Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and  back in 

linear time, but some algorithms needn’t do so)

2. Maybe in the case of ties we should preserve the original ordering

– Sorts that do this naturally are called stable sorts

– One way to sort twice, Ex: Sort movies by year, then for ties, 

alphabetically

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called ‘in-place’ sorts

– Not allowed to allocate extra array (at least not with size O(n)), but can 

allocate O(1) # of variables

– All work done by swapping around in the array

4. Maybe we can do more with elements than just compare

– Comparison sorts assume we work using a binary ‘compare’ operator

– In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm
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Sorting: The Big Picture
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(n log n)

Specialized
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O(n)

Handling

huge data

sets

Insertion sort
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Shell sort

…
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Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting



Insertion Sort

• Idea: At step k, put the kth element in the correct position among 

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time? 

Best-case  _____     Worst-case  _____     “Average” case ____
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Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Time? 

Best-case  _____     Worst-case  _____     “Average” case ____
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Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic 

complexity

– Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted”

• Other algorithms are more efficient for non-small arrays that are 

not already almost sorted

– Insertion sort may do well on small arrays
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Aside: We won’t cover Bubble Sort

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to common factors

• Basically, almost everything it is good at, some other algorithm 

is at least as good at

• Some people seem to teach it just because someone taught it to 

them

• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003

http://www.cs.duke.edu/~ola/bubble/bubble.pdf
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Sorting: The Big Picture
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Heap sort

• Sorting with a heap is easy:

– insert each arr[i], better yet use buildHeap

– for(i=0; i < arr.length; i++) 

arr[i] = deleteMin();

• Worst-case running time:

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…
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In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!
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4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –

how would you fix that?



“AVL sort”

• How?
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Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half, 

split into halves…
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Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element 

Divide elements into those less-than pivot 

and those greater-than pivot

Sort the two divisions (recursively on each)

Answer is [sorted-less-than then pivot then 

sorted-greater-than]
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Mergesort

• To sort array from position lo to position hi:

– If range is 1 element long, it’s sorted! (Base case)

– Else, split into two halves: 

• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…
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hi

0         1        2          3        4         5         6         7

lo



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After we return from

left and right recursive calls 

(pretend it works for now)  

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

(After merge, 

copy back to 

original array)

aux

a

a



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge, 

copy back to 

original array)

1 2 3 4 5 6 8 9



Mergesort example: Recursively splitting 

list in half

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6
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Mergesort example: Merge as we return 

from recursive calls

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6

When a recursive call ends, it’s sub-arrays are each in order; just   

need to merge them in order together10/28/2020 34



Mergesort example: Merge as we return 

from recursive calls

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6

We need another array in which to do each merging step; merge   

results into there, then copy back to original array10/28/2020 35



Mergesort, some details: saving a little time

• What if the final steps of our merging looked like the following:

• Seems kind of wasteful to copy 8 & 9 to the auxiliary array just 

to copy them immediately back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array
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Mergesort, some details: saving a little time

• Unnecessary to copy ‘dregs’ over to auxiliary array

– If left-side finishes first, just stop the merge & copy the 
auxiliary array:

– If right-side finishes first, copy dregs directly into right side, 
then copy auxiliary array

copy

first

second
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Some details: saving space / copying

Simplest / worst approach: 

Use a new auxiliary array of size (hi-lo) for every merge

Returning from a recursive call?  Allocate a new array!

Better:

Reuse same auxiliary array of size n for every merging stage

Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the 

original array as the auxiliary array and vice-versa

– Need one copy at end if number of stages is odd

10/28/2020 38



Picture of the “best” from previous slide: 

Allocate one auxiliary array, switch each step

First recurse down to lists of size 1

As we return from the recursion, switch off arrays

Arguably easier to code up without recursion at all

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed
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Linked lists and big data

We defined the sorting problem as over an array, but sometimes 

you want to sort linked lists

One approach:

– Convert to array: O(n)

– Sort: O(n log n)

– Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly

– heapsort and quicksort do not

– insertion sort and selection sort do but they’re slower

Mergesort is also the sort of choice for external sorting

– Linear merges minimize disk accesses
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Mergesort Analysis

Having defined an algorithm and argued it is correct, we should 

analyze its running time (and space):

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

10/28/2020 41



Mergesort Analysis

Having defined an algorithm and argued it is correct, we should 

analyze its running time (and space):

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

T(1) = c1

T(n) = 2T(n/2) + c2n
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MergeSort Recurrence

(For simplicity let constants be 1 – no effect on asymptotic answer)

T(1) = 1                                            So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n                                   n/2k = 1, i.e., log n = k   

= 2(2T(n/4) + n/2) + n               That is, 2log n T(1) + n log n

= 4T(n/4) + 2n                                     = n + n log n

= 4(2T(n/8) + n/4) + 2n                        = O(n log n)

= 8T(n/8) + 3n

…. (after k expansions)

= 2kT(n/2k) + kn
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Or more intuitively…

This recurrence comes up often enough you should just “know” it’s 
O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

• The recursion “tree” will have log n height

• At each level we do a total amount of merging equal to n
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Quicksort

• Also uses divide-and-conquer

– Recursively chop into halves

– But, instead of doing all the work as we merge together, we’ll 

do all the work as we recursively split into halves

– Also unlike MergeSort, does not need auxiliary space

• O(n log n) on average , but O(n2) worst-case 

– MergeSort is always O(nlogn)

– So why use QuickSort?

• Can be faster than mergesort

– Often believed to be faster

– Quicksort does fewer copies and more comparisons, so it 

depends on the relative cost of these two operations!
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Quicksort Overview

1. Pick a pivot element

– Hopefully an element ~median

– Good QuickSort performance depends on good choice of pivot; we’ll see 

why later, and talk about good pivot selection later

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C” 

(Alas, there are some details lurking in this algorithm)

10/28/2020 46



Quicksort: Think in terms of sets
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13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0S1 S2

partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted

[Weiss]



Quicksort Example, showing recursion
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2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9



2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9

MergeSort

Recursion Tree

QuickSort

Recursion Tree
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Quicksort Details

We have not yet explained:

• How to pick the pivot element

– Any choice is correct: data will end up sorted

– But as analysis will show, want the two partitions to be about 

equal in size

• How to implement partitioning

– In linear time

– In place
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Pivots

• Best pivot?

– Median

– Halve each time

• Worst pivot?

– Greatest/least element

– Reduce to problem of size 1 smaller

– O(n2)

2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9
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Quicksort: Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]

– Fast, but worst-case is (mostly) sorted input

• Pick random element in the range

– Does as well as any technique, but (pseudo)random number 

generation can be slow

– (Still probably the most elegant approach)

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

– Common heuristic that tends to work well
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Partitioning

• That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5

– Dividing into left half & right half (based on pivot)

• Conceptually simple, but hardest part to code up correctly

– After picking pivot, need to partition

• Ideally in linear time

• Ideally in place

• Ideas?
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Partitioning

• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]; move it ‘out of the way’

2. Use two fingers i and j, starting at lo+1 and hi-1 (start & 

end of range, apart from pivot)

3. Move from right until we hit something less than the pivot; 

belongs on left side

Move from left until we hit something greater than the pivot; 

belongs on right side 
Swap these two; keep moving inward

while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] <= pivot) i++

else swap arr[i] with arr[j]

4. Put pivot back in middle (Swap with arr[i])
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Quicksort Example

• Step one: pick pivot as median of 3

– lo = 0, hi = 10
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6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9



Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot
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6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than 

one swap during partition –

this is a short example

5 1 4 2 0 3 6 9 7 8



Quicksort Analysis

• Best-case?

• Worst-case?

• Average-case?
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Quicksort Cutoffs

• For small n, all that recursion tends to cost more than doing a 

quadratic sort

– Remember asymptotic complexity is for large n

– Also, recursive calls add a lot of overhead for small n

• Common engineering technique: switch to a different algorithm 

for subproblems below a cutoff

– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:

– Could also use a cutoff for merge sort

– Cutoffs are also the norm with parallel algorithms 

• switch to sequential algorithm

– None of this affects asymptotic complexity
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Quicksort Cutoff skeleton
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void quicksort(int[] arr, int lo, int hi) {

if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);

else

…

}

Notice how this cuts out the vast majority of the recursive calls 

– Think of the recursive calls to quicksort as a tree

– Trims out the bottom layers of the tree


