CSE 332: Data Structures & Parallelism

Lecture 11:More Hashing

Ruth Anderson
Autumn 2020



Today

* Dictionaries
— Hashing

10/26/2020



Hash Tables: Review

« Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

« A hash table is an array of some fixed size hash table
— But growable as we’ll see 0
client hash table library

collision?  ollision

E mmees) int msss) table-index o) esolution

TableSize -1

10/26/2020 3




Hashing Choices

1. Choose a Hash function
2. Choose TableSize
3. Choose a Collision Resolution Strategy from these:
— Separate Chaining
— Open Addressing
 Linear Probing
* Quadratic Probing
* Double Hashing

« Other issues to consider:
— Deletion?

— What to do when the hash table gets “too full™?

10/26/2020



Open Addressing: Linear Probing

 Why not use up the empty space in the table?

« Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,
— try (h(key) + 1) % TableSize. Iffull
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

 Example: insert 38, 19, 8, 109, 10

10/26/2020

© 00 N O 01 b WO N - O

38




Open Addressing: Linear Probing

« Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

10/26/2020

© 00 N O 01 b WO N - O

e e e B B e e

w
oo

[HEN
©




Open Addressing: Linear Probing

« Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

10/26/2020

© 00 N O 01 b WO N - O

~N |l SN 1INl SNN|l~~|~~]|~]0

w
oo

[HEN
©




Open Addressing: Linear Probing

« Another simple idea: If h (key) Is already full, 0 8
— try (h(key) + 1) % TableSize. Iffull, 1 109
— try (h(key) + 2) % TableSize. Iffull 2 /
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
« Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19

10/26/2020



Open Addressing: Linear Probing

« Another simple idea: If h (key) is already full,

— try (h(key) + 1) % TableSize. Iffull, 109

10

— try (h(key) + 2) % TableSize. Iffull
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

38

© 00 N O 01 b WO N - O
~N | < ||~

19

10/26/2020



Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table.

Trying the next spot is called probing
— We just did linear probing:

- ith probe: (h(key) + i) % TableSize
— In general have some probe function £ and :
« it probe: (h(key) + £(i)) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)

10/26/2020 10



Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,

— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

10/26/2020

11



Open Addressing: Linear Probing

What about £ind? If value is in table? If not there? Worst case?

What about delete?

How does open addressing with linear probing compare to separate
chaining?

10/26/2020 12



Open Addressing: Other Operations

insert finds an open table position using a probe function

What about £ind?
— Must use same probe function to “retrace the trail” for the data
— Unsuccessful search when reach empty position
What about delete?
— Must use “lazy” deletion. Why?
« Marker indicates “no data here, but don’t stop probing”

10 | x= [ | 23 | / /[ | 16 | * | 26

 As with lazy deletion on other data structures, on insert,
spots marked “deleted” can be filled in.

— Note: delete with chaining is plain-old list-remove

10/26/2020 13



Primary Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

. ].!'_]-IL._ill._—llll—J
Ly elieliei]
« Tends to produce o uuugmmmuummuu e
1 b
clusters, which lead { . mmmuummuuutﬂutﬂu N
L el e
to Iongnprobe e muummuuum?\ﬂ o
LJ L]
seque C§S LI eIl umuuumummm
« Called primary Lyl e o ey eliotie SIS
' Lo e
clustering PEERCCCCL ; e
Lusyel®
« Saw the start of a N mumﬁwmmumuuuumuuuuuu
cluster in our linear e mmmummmkﬂuuuuu -
. ol o
probing example - e mmuwmmﬁmmmu )
WILIR L el
S+ 0008 ST
Ly [R. Sedgewick]

10/26/2020 14



Analysis of Linear Probing

« Trivial fact: For any A < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

 Non-trivial facts we won't prove:
Average # of probes given A (in the limit as TableSize —w)

— Unsuccessful search:
1 1
— 1+—2
2\ (1-21)

2

1+~

— Successful search: 1 1
(1-2)

« This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

10/26/2020 15



Analysis In chart form

« Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing

Linear Probing

16.00 » 350.00
14.00 2 30000
o
12.00 < 250.00
10.00 a
/ %5 200.00
8.00 . . i .
/ ———linear probing #* 150.00 ——linear probing
6.00 / not found Qv not found
4.00 {?-Uﬁ 100.00
_/ linear prohing B 50.00 / = |inear probing
2.00 found > ' /) found
0.00 < 000
~N oo M O M~ s o~ o0 O O 00 ™~ W W o= Mmooy
o~ M s N Ww o~ S = =~ M st W0~ 0

o
Load Factor

« By comparison, separate chaining performance is linear in A and
has no trouble with A>1

10/26/2020 16



Open Addressing: Linear probing

(h(key) + £(i)) % TableSize

— For linear probing:
fF(i) = i

— So probe segquence is:

« Ot probe: h(key) % TableSize

« 1stprobe: (h(key) + 1) % TableSize
2"d probe: (h(key) + 2) % TableSize
39 probe: (h(key) + 3) % TableSize

i probe: (h(key) + i) % TableSize

10/26/2020

17



Open Addressing: Quadratic probing

« We can avoid primary clustering by changing the probe function...
(h(key) + £(i)) % TableSize

— For quadratic probing:
f(i) = i?
— So probe sequence is:
« O probe: h(key) % TableSize
« 1stprobe: (h(key) + 1) % TableSize
« 2"dprobe: (h(key) + 4) % TableSize
« 3dprobe: (h(key) + 9) % TableSize

" probe: (h(key) + i2?) % TableSize

* Intuition: Probes quickly “leave the neighborhood”

10/26/2020 18



ith probe: (h (key) + i?) % TableSize

Quadratic Probing Example

10/26/2020

© 00 N O O b WO N - O

TableSize=10

Insert:

89

18

49

58

79

19



Quadratic Probing Example
TableSize = 10
Insert(89)

© 00O N OO O o WO N P+ O

10/26/2020

20



Quadratic Probing Example
TableSize = 10
Insert(89)
Insert(18)

© 00O N OO O o WO N P+ O

89

10/26/2020



Quadratic Probing Example

18

© 00O N OO O o WO N P+ O

89

10/26/2020

TableSize = 10
Insert(89)
Insert(18)
Insert(49)

22



Quadratic Probing Example

0 49
1
2
3
4
)
6
7
8 18
9 89

10/26/2020

TableSize = 10
Insert(89)
Insert(18)
Insert(49)
49 % 10 = 9 collision!
(49+1)% 10=0
Insert(58)

23



Quadratic Probing Example

0 49
1
2 58
3
4
)
6
7
8 18
9 89

10/26/2020

TableSize = 10
Insert(89)
Insert(18)
Insert(49)
Insert(58)
58 % 10 = 8 collision!
(58 + 1) % 10 = 9 collision!
(58 +4)% 10=2
Insert(79)

24



Quadratic Probing Example

0 49
1
2 58
3 79
4
)
6
7
8 18
9 89

10/26/2020

TableSize = 10

Insert(89)

Insert(18)

Insert(49)

Insert(58)

Insert(79)
79 % 10 =9 collision!
(79 + 1) % 10 = 0 collision!
(79+4)% 10=3

25



ith probe: (h (key) + i?) % TableSize

Another Quadratic Probing Example

o o1 A WO DN L O

10/26/2020

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

26



Another Quadratic Probing Example

o O b~ WO N - O

76

10/26/2020

ith probe: (h (key) + i?) % TableSize

TableSize =7
Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7 =5)
(55 % 7 = 6)
(47 % 7 = 5)

27



Another Quadratic Probing Example

40

o O b~ WO N - O

/6

10/26/2020

ith probe: (h (key) + i?) % TableSize

TableSize =7
Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7 =5)
(55 % 7 = 6)
(47 % 7 = 5)

28



Another Quadratic Probing Example

0 48
1
2
3
4
) 40
6 76

10/26/2020

ith probe: (h (key) + i?) % TableSize

TableSize =7
Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7 =5)
(55 % 7 = 6)
(47 % 7 = 5)

29



Another Quadratic Probing Example

0 48
1
2 5
3
4
) 40
6 76

10/26/2020

ith probe: (h (key) + i?) % TableSize

TableSize =7
Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7 =5)
(55 % 7 = 6)
(47 % 7 = 5)

30



Another Quadratic Probing Example

0 48
1

2 5
3 95
4

) 40
6 76

10/26/2020

ith probe: (h (key) + i?) % TableSize

TableSize =7
Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7 =5)
(55 % 7 = 6)
(47 % 7 = 5)

31



ith probe: (h (key) + i?) % TableSize

Another Quadratic Probing Example

0 48
1

2 5
3 95
4

) 40
6 76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40% 7 =5)
48 (48 % 7 =6)
5 (5% 7 =5)
55 (55% 7 =6)
47 (47 % 7 =5)

Will we ever geta 1 or

10/26/2020

4717

(47 + 1) % 7 =6 collision!
(47 + 4) % 7 = 2 collision!
(47 +9) % 7 =0 collision!
(47 + 16) % 7 = 0 collision!
(47 + 25) % 7 = 2 collision!

32



Another Quadratic Probing Example

0 48
1

2 5
3 55
4

) 40
6 76

10/26/2020

insert(47) will always fail here. Why?

Foralli,(5+i9)%7is0,2,5,0r6
Proof uses induction and
5+i)%7=06B+{-7))%7
In fact, for all c and Kk,
(c+i?)) % k=(c+(i-k)?) %k

33



From bad news to good news

Bad News:

« After TableSize quadratic probes, we cycle through the same
iIndices
Good News:

* |f Tablesize IS prime and A < %z, then quadratic probing will find an
empty slot in at most Tablesize/2 probes

 So: If you keep A <¥2 and TableSize IS prime, no need to detect
cycles

* Proof posted in lecturell. txt (slightly less detailed proof in textbook)
For prime TableSizeand 0 £ i,j < TableSize/2 Wherei # j,
(h(key) + i?) % TableSize # (h(key) + j?) % TableSize

That is, if TableSize is prime, the first TableSize/2 quadratic probes

map to different locations (and one of those will be empty if the table
is < half full).

10/26/2020 34



Quadratic Probing: First size/2 probes
distinct. If < half full,

Success guarantee for A < % one is empty.

« If size is prime and A < Y2, then quadratic probing will find
an empty slot in size/2 probes or fewer.

th probeEnc?hOW forallo < i,j < size/2andi # j Flrs; size/2
jthprobe  (h(x) + i?) mod size # (h(x) + j2) mod size probes will
o — be distinct,
— by contradiction: suppose that for some i # : and if less
(h(x) + i?%) mod size = (h(x) + j2?) mod size than half of
= 1i? mod size = j? mod size table is full
= (i%? - j?) mod size = 0 then after
= [(i + J) (i - j)] mod size = 0 size/2 probes
One of BUT size does not divide (i-3j) or (i+j) you will find
thre]zgeo one of those
nust  Howcani+j = 0 or i+j = size when: Size would empty spots
° . . : 5 need to divide
be = 0 i#73 and 0 <i,j < size/2"
o o o _ one of these
when  Similarly howcani-j = 0 or i-j = size ?
mod
size

10/26/2020 35



Clustering reconsidered

« Quadratic probing does not suffer from primary clustering:
As we resolve collisions we are not merely growing “big blobs” by
adding one more item to the end of a cluster, we are looking i?
locations away, for the next possible spot.

« But quadratic probing does not help resolve collisions between
keys that initially hash to the same index

— Any 2 keys that initially hash to the same index will have the
same series of moves after that looking for any empty spot

— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing...

10/26/2020 36



Open Addressing: Double hashing

ldea: Given two good hash functions h and g, it is very unlikely that for
some key, h(key) == g(key)

(h(key) + £(i)) % TableSize
— For double hashing:
£(i) = i*g(key)
— So probe sequence is:
« O probe: h(key) % TableSize
« 1stprobe: (h(key) + g(key)) % TableSi:ze
« 2"dprobe: (h(key) + 2*g(key)) % TableSize
« 3dprobe: (h(key) + 3*g(key)) % TableSize

« " probe: (h(key) + i*g(key)) % TableSize

» Detail: Make sure g (key) can’'t be 0

10/26/2020 37



ith probe: (h (key) + i*g(key)) % TableSize

Open Addressing: Double Hashing

()

© 0O N O O b W0 DN PP

10/26/2020

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

38




ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 h(key) =key mod T
2 g(key) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
c any collisions with double hashing:
13
6
28
.
33
8
147
9
43

10/26/2020 39



ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 h(key) =key mod T
2 g(key) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
c any collisions with double hashing:
13
6
28
.
33
8 28
147
9
43

10/26/2020 40



ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing
T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

13

Insert these values into the hash table in this order. Resolve
any collisions with double hashing:

13
28
332 g(33)=1+3mod9=4
147
43

33
28

© 00O N O o b W N+, O

10/26/2020 41



ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 h(key) = key mod T
2 g(key) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
c any collisions with double hashing:
13
6
28
4 33
33
8 28
147 2> g(147)=1+14mod9=6
9 | 147 13

10/26/2020 42



ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 h(key) =key mod T
2 g(key) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
c any collisions with double hashing:
13
6
28
4 33
33
8 28
147 2> g(147)=1+14mod9=6
9 147

43 =2 9g(43)=1+4mod9=5
We have a problem:
3+0=3 3+5=8 3+10=13
3+15=18 3+20=23
10/26/2020 43



Double-hashing analysis

* Intuition: Since each probe is “jumping” by g (key) each time,
we “leave the neighborhood” and “go different places from other
initial collisions”

But, as in quadratic probing, we could still have a problem where
we are not "safe" due to an infinite loop despite room in table

— Itis known that this cannot happen in at least one case:
For primes p and g suchthat2<qg<p

h(key) = key % p

gkey) = q — (key % q)

10/26/2020 44



Yet another reason to use a prime
TableSize

So, for double hashing
i probe: (h(key) + i*g(key))$% TableSize
Say g(key) divides Tablesize
— That is, there is some integer x such that x*g(key)=Tablesize

— After x probes, we’'ll be back to trying the same indices as
before

EX:
— Tablesize=50
— g(key)=25
— Probing sequence:
* h(key)
* h(key)+25
* h(key)+50=h(key)
* h(key)+75=h(key)+25
Only 1 & itself divide a prime

10/26/2020 45



More double-hashing facts

* Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p IS
1/p

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —w)

— Unsuccessful search (intuitive): 1
1- 1

— Successful search (less intuitive): 9 1
—I ge(l_ zj

« Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

10/26/2020 46



Charts

Uniform Hashing

Uniform Hashing

» 7.00 » 120.00
CIJ CIJ
o 6.00 // L 100.00
E 5.00 E
a / a  80.00
“= 4.00 =
o - / O  50.00
* 300 uniform hashing =3 ' = uniform hashing
Y / not found @ not found
80 2.00 —_—— & 40.00
a 100 = uniform hashing a 20.00 uniform hashing
> found > ; found
< 0.00 < 0.0
= 0 ! N0 MmO M~ s = o0 = O O 00 ™~ W W s Mmoo
OO 4 NN M NN 0w~ O A A NN MmN W~ O
L I e TR s R s Y s T e Y s [ s T o T s Y s R o o 00 0O 00000 oo
Load Factor Load Factor
Linear Probing Linear Probing
» 16.00 » 350.00
& 1400 ] 2 30000
o o
= 12,00 / < 250.00
Q1000 a
S . / %5 200.00
=3 8.00 / ———linear probing #* 150.00 ——linear probing
o 6.00 / not found v not found
%0 4.00 %0 100.00 /
3 200 -~ linear prohing o 5000 linear prohing
> found > ﬁ ! found
<  0.00 < 000
= 00 " ~N Oy o M O M~ s o~ o0 = O O 00 M~ W s N oy o
OO = NN M SN W~ NS O — = &N M N0~ 0O
[ I e I s R s [ s T e T s T s Y s Y s Y o Y o o 0O O 0 o0 o oo oo
Load Factor Load Factor




Where are we?

« Separate Chaining is easy

- find, insert, delete proportional to load factor on
average if using unsorted linked list nodes

— If using another data structure for buckets (e.g. AVL tree) ,
runtime is proportional to runtime for that structure.

« Open addressing uses probing, has clustering issues as table fills
Why use it:

— Less memory allocation?

« Some run-time overhead for allocating linked list (or
whatever) nodes; open addressing could be faster

— Easier data representation?
 Now:
— Growing the table when it gets too full (aka “rehashing”)
— Relation between hashing/comparing and connection to Java

10/26/2020 48



Rehashing

« As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything over

« With separate chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

 For open addressing, half-full is a good rule of thumb

 New table size
— Twice-as-big is a good idea, except, uhm, that won’t be prime!
— S0 go about twice-as-big

— Can have a list of prime numbers in your code since you
probably won’t grow more than 20-30 times, and then
calculate after that

10/26/2020 49



More on rehashing

* What if we copy all data to the same indices in the new table?
— Will not work; we calculated the index based on TableSize

« Go through table, do standard insert for each into new table
— lIterate over old table: O(n)
— ninserts / calls to the hash function: n - O(1) = O(n)

* Is there some way to avoid all those hash function calls?
— Space/time tradeoff: Could store h (key) with each data item
— Growing the table is still O(n); saving h (key) only helps by a
constant factor

10/26/2020 50



Hashing and comparing

« Our use of int key can lead to us overlooking a critical detail:
— We initially hash E to get a table index

— While chaining or probing we need to determine if this is the E
that | am looking for. Just need equality testing.

« So a hash table needs a hash function and a equality testing

— In the Java library each object has an equals method and a
hashCode method

class Object {
boolean equals (Object o) {..}
int hashCode () {..}

10/26/2020 51



Equal objects must hash the same

 The Java library (and your project hash table) make a very
important assumption that clients must satisfy...

« Object-oriented way of saying it:
If a.equals (b), then we must require
a.hashCode () ==b.hashCode ()

* Function object way of saying it:
If c.compare (a,b) == 0, then we must require
h.hash(a) == h.hash (b)

« If you ever override equals
— You need to override hashCode also in a consistent way
— See CorelJava book, Chapter 5 for other "gotchas" with equals

10/26/2020



By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
— All our dictionaries

— Sorting (next major topic)
Comparison must impose a consistent, total ordering:

For all a, b, and ¢,
— If compare (a,b) < 0, then compare(b,a) > 0
— If compare (a,b) == 0, then compare (b,a) ==

— If compare (a,b) < 0and compare(b,c) < 0,
then compare (a,c) < O

10/26/2020 53



A Generally Good hashCode()

Effec li.\*c Java

occond Fdition

Int result = 17; // start at a prime

foreach field f

int fieldHashcode =
boolean: (f ? 1: 0)
byte, char, short, int: (int) f
long: (int) (f * (f >>> 32))
float: Float.floatTolntBits(f)
double: Double.doubleToLongBits(f), then above
Obiject: object.hashCode( )

result = 31 * result + fieldHashcode:
return result;

10/26/2020 54



Final word on hashing

 The hash table is one of the most important data structures
— Efficient find, insert, and delete
— Operations based on sorted order are not so efficient
— Useful in many, many real-world applications
— Popular topic for job interview questions
* Important to use a good hash function
— Good distribution, Uses enough of key’s values
— Not overly expensive to calculate (bit shifts good!)
« Important to keep hash table at a good size
— Prime #
— Preferable A depends on type of table

* What we skipped: Perfect hashing, universal hash functions,
hopscotch hashing, cuckoo hashing

« Side-comment: hash functions have uses beyond hash tables
— Examples: Cryptography, check-sums

10/26/2020 55



