
CSE 332: Data Structures & Parallelism

Lecture 7: Dictionaries; Binary Search Trees

Ruth Anderson

Autumn 2020

Today

• Dictionaries

• Trees

10/14/2020 2

Where we are

Studying the absolutely essential ADTs of computer science and

classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, …

2. Queue: enqueue, dequeue, isEmpty, …

3. Priority queue: insert, deleteMin, …

Next:

4. Dictionary (a.k.a. Map): associate keys with values

– probably the most common, way more than priority queue

10/14/2020 3

The Dictionary (a.k.a. Map) ADT

Data:

• set of (key, value) pairs

• keys must be comparable

Operations:

• insert(key,val):

- places (key,val) in map

(If key already used, overwrites

existing entry)

• find(key):

- returns val associated with key

• delete(key)

– …

• rea

Ruth

Anderson

…

• jhsia

Justin

Hsia

…

insert (rea, Ruth Anderson)

find (jhsia)

Justin Hsia,…

We will tend to emphasize the keys, but

don’t forget about the stored values!10/14/2020 4

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

– A key is present or not (no repeats)

For find, insert, delete, there is little difference

– In dictionary, values are “just along for the ride”

– So same data-structure ideas work for dictionaries and sets

• Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

– union, intersection, is_subset, etc.

– Notice these are binary operators on sets

– We will want different data structures to implement these

operators

10/14/2020 5

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and

be able to retrieve it efficiently – a dictionary is the ADT to use!

– Lots of programs do that!

• Networks: router tables

• Operating systems: page tables

• Compilers: symbol tables

• Databases: dictionaries with other nice properties

• Search: inverted indexes, phone directories, …

• Biology: genome maps

• …

10/14/2020 6

Simple implementations

For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array

We’ll see a Binary Search Tree (BST) probably does better, but

not in the worst case unless we keep it balanced

10/14/2020 7

Lazy Deletion (e.g. in a sorted array)

A general technique for making delete as fast as find:

– Instead of actually removing the item just mark it deleted

– No need to shift values, etc.

Plusses:

– Simpler

– Can do removals later in batches

– If re-added soon thereafter, just unmark the deletion

Minuses:

– Extra space for the “is-it-deleted” flag

– Data structure full of deleted nodes wastes space

– find O(log m) time where m is data-structure size (m >= n)

– May complicate other operations
10/14/2020 9

10 12 24 30 41 42 44 45 50

        

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with

three different data structures

1. AVL trees

– Binary search trees with guaranteed balancing

2. B-Trees

– Also always balanced, but different and shallower

– B!=Binary; B-Trees generally have large branching factor

3. Hashtables

– Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

10/14/2020 10

Why Trees?

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of binary search

10/14/2020 11

Binary Search

3 4 5 7 8 9 101

find(4)

10/14/2020 12

Binary Search Tree

Our goal is the performance of binary search in

a tree representation

3 4 5 7 8 9 101

10/14/2020 13

Why Trees?

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

Insert Find Delete

Worse-Case O(n) O(n) O(n)

Average-Case O(log n) O(log n) O(log n)

10/14/2020 14

Binary Trees

• Binary tree is empty or

– a root (with data)

– a left subtree (maybe empty)

– a right subtree (maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right

pointer

left

pointer

• For a dictionary, data will include a
key and a value

10/14/2020 15

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

10/14/2020 16

Calculating height

What is the height of a tree with root root?

10/14/2020 18

int treeHeight(Node root) {

???

}

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

10/14/2020 20

More on traversals

void inOrdertraversal(Node t){

if(t != null) {

traverse(t.left);

process(t.element);

traverse(t.right);

}

}

Sometimes order doesn’t matter

• Example: sum all elements

Sometimes order matters

• Example: print tree with parent above

indented children (pre-order)

• Example: evaluate an expression tree

(post-order)

A

B

D

E

C

F

G

A

B

D E

C

F G

10/14/2020 22

Binary Search Tree

4

121062

115

8

14

13

7 9

• Structural property (“binary”)

– each node has  2 children

– result: keeps operations simple

• Order property

– all keys in left subtree smaller

than node’s key

– all keys in right subtree larger

than node’s key

– result: easy to find any given key

10/14/2020 23

Are these BSTs?

10/14/2020 24

3

1171

84

5

4

181062

115

8

20

21

7

15

Find in BST, Recursive

2092

155

12

307 1710

Data find(Key key, Node root){

if(root == null)

return null;

if(key < root.key)

return find(key,root.left);

if(key > root.key)

return find(key,root.right);

return root.data;

}

10/14/2020 26

Find in BST, Iterative

2092

155

12

307 1710

Data find(Key key, Node root){

while(root != null

&& root.key != key) {

if(key < root.key)

root = root.left;

else(key > root.key)

root = root.right;

}

if(root == null)

return null;

return root.data;

}

10/14/2020 27

Other “finding operations”

• Find minimum node

• Find maximum node

10/14/2020 28

2092

155

12

307 1710

Insert in BST

10/14/2020 29

insert(13)

insert(8)

insert(31)

(New) insertions happen

only at leaves – easy!

1. Find

2. Create a new node

2092

155

12

307 1710

Deletion in BST

2092

155

12

307 17

Why might deletion be harder than insertion?

10

10/14/2020 30

Deletion

• Removing an item disrupts the tree structure

• Basic idea:

– find the node to be removed,

– Remove it

– “fix” the tree so that it is still a binary search tree

• Three cases:

– node has no children (leaf)

– node has one child

– node has two children

10/14/2020 31

Deletion – The Leaf Case

2092

155

12

307 17

delete(17)

10

10/14/2020 32

Deletion – The One Child Case

2092

155

12

307 10

10/14/2020 33

delete(15)

Deletion – The Two Child Case

10/14/2020 34

delete(5)

What can we replace 5 with?

3092

205

12

7 10

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be

between the two child subtrees

Options:

• successor from right subtree: findMin(node.right)

• predecessor from left subtree: findMax(node.left)

– These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

• Leaf or one child case – easy cases of delete!

10/14/2020 35

Delete Using Successor

3092

205

12

7 10

delete(5)

findMin(right sub tree)  7

3092

207

12

10

10/14/2020 36

Delete Using Predecessor

3092

205

12

7 10

delete(5)

findMax(left sub tree)  2

309

202

12

7 10

10/14/2020 37

BuildTree for BST

• We had buildHeap, so let’s consider buildTree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order,

what is the tree?

– What big-O runtime for

this kind of sorted input?

– Is inserting in the reverse order

any better?

10/14/2020 38

1

2

3

Balanced BST

Observation

• BST: the shallower the better!

• For a BST with n nodes inserted in arbitrary order

– Average height is O(log n) – see text for proof

– Worst case height is O(n)

• Simple cases such as inserting in key order lead to

the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) – strong enough!

2. is easy to maintain – not too strong!

10/14/2020 40

Potential Balance Conditions

1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root

have equal height

10/14/2020 41

Potential Balance Conditions

3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node

have equal height

10/14/2020 43

45

The AVL Balance Condition

Left and right subtrees of every node

have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1  balance(x)  1

• Ensures small depth

– Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

• Easy (well, efficient) to maintain

– Using single and double rotations

10/14/2020

