
CSE 332: Data Structures and Parallelism Autumn 2020
P2: uMessage Checkpoint 1: Due Tue, Oct 20th

Checkpoint 2: Due Mon, Nov 2nd
P2 Due Date: Due Tue, Nov 10th

The purpose of this project is to implement various data structures and algorithms described in
class. You will also implement the back-end for a chat application called “uMessage”.

Overview
One of the most important ADTs is the Dictionary and one of the most studied problems is sorting.
In this assignment, you will write multiple implementations (AVLTree, HashTable, etc.) of Dictionary
and multiple sorting algorithms.

All of these implementations will be used to drive word suggestion, spelling correction, and autocompletion
in a chat application called uMessage. These algorithms are very similar to the ones smartphones use
for these problems, and you will see that they do relatively well with a small effort. Since uMessage has
many components and is difficult to test, we will ask you to test your code by writing another client for
WordSuggestor.

We have provided the boring pieces of these programs (e.g., GUIs, printing code, etc.), but you will write
the data structures that back all of the code we’ve written.

Project Restrictions
• You must work in a group of two unless you successfully petition to work by yourself.

• You may not use any of the built-in Java data structures. One of the main learning outcomes is to
write everything yourself.

• You may use the math package.

• You may not edit any file in the cse332.* packages.

• The design and architecture of your code are a substantial part of your grade.

• The Write-Up is a substantial part of your grade; do not leave it to the last minute.

• Make sure to not duplicate fields that are in super-classes (e.g., size). This will lead to unexpected
behavior and failures of tests.

P1 and Beyond
This project actually extends on p1 a lot! You will need to port over (i.e., put them in the same packages)
the following:

• datastructures.worklists: All your simple WorkLists: ArrayStack, ListFIFOQueue,
CircularArrayFIFOQueue

• datastructures.dictionaries: Your HashTrieSet and your HashTrieMap

Be sure you do NOT place these in cse332.datastructures.worklists. After you port these files over,
CircularArrayFIFOQueue won’t compile. It defines a type parameter E in CircularArrayFIFOQueue<E>
at the top of the class, but you should replace this E with “E extends Comparable<E>”.

1



Provided Code
Several of the interfaces and implementations from p1 also appear in p2. We will only describe the new
classes in an attempt to be less overwhelming.

• cse332.interfaces.misc
– DeletelessDictionary.java: Like a dictionary, but the delete method is unsupported.
– ComparableDictionary.java: A DeletelessDictionary that requires comparable keys.
– SimpleIterator.java: A simplification of Java’s Iterator that has no remove method.

• cse332.datastructures.*
– Item.java: A simple container for a key and a value. This is intended to be used as the

object stored in your dictionaries.
– BinarySearchTree.java: An implementation of Dictionary using a binary search tree. It

is provided as an example of how to use function objects and iterators. The iterators you write
will not be as difficult.

• cse332.*
– WordReader.java: Standardizes inputs into lower case without punctuation.
– LargeValueFirstItemComparator.java: A comparator that considers larger values as “smaller”,

and breaks ties by considering the keys.
– InsertionSort.java: A provided implementation of InsertionSort.
– AlphabeticString.java: This type is a BString that is just a wrapper for a standard

String.
– NGram.java: This type is a BString that represents an n-gram.

• p2.wordcorrector
– AutocompleteTrie.java: This is the trie used by uMessage; it is backed by HashTrieMap.
– SpellingCorrector.java: This is the spelling corrector used by uMessage.

• p2.wordsuggestor
– NGramToNextChoicesMap.java: Client data structure that will be used to drive WordSuggestor.
– ParseFBMessages.java: This program downloads your facebook messages. It is intended to

be used as a way of generating a personal corpus for the WordSuggestor. There are more
instructions for using this in the writeup spec

– WordSuggestor.java: This is the word suggestor used by uMessage.
• chat

– uMessage.java: This is the main driver program for uMessage.

You will implement data structures MinFourHeap (in ), MoveToFrontList, AVLTree, and ChainingHashTable
(in datastructures.dictionaries) and sorting algorithms HeapSort, QuickSort, and TopKSort (in
p2.sorts).

uMessage
After you have finished all the implementations, you will be ready to try out uMessage. We expect you to
actually play with the application, and the Write-Up will ask you to do several things with it. Importantly,
there are configuration settings (n and the corpus) at the top of uMessage.java which you will want to
edit.

2



Project Checkpoints
This project will have two checkpoints (and a final due date). A checkpoint is a check-in on a certain
date to make sure you are making reasonable progress on the project. For each checkpoint, you (and
your partner) will turn in a Gradescope survey individually.

As long as you turn in the checkpoint survey, the checkpoint will not affect your grade in any way.

Checkpoint 1: (1), (2) Tue, Oct 20th
Checkpoint 2: (3), (4), (5), (6) Mon, Nov 2nd
P2 Due Date: (7), (8) Tue, Nov 10th

Part 0: Importing .jar files
P2 uses a number of .jar files which you will need to import. Make sure to follow the steps below for
all of the files in the directory that end in .jar as well as the javafx directory.
To import the jar file or directory

(1) In the main menu, go to File | Project Structure

(2) Go to Project Settings | Libraries

(3) Click on the + button
(4) Locate the file or folder in the main directory
(5) Apply settings and click Ok

Part 1: Another WorkList
First, implement one more WorkList:

(1) MinFourHeapComparable
Your MinFourHeapComparable should be an implementation of the heap data structure we’ve discussed
in class. It should be an array-based implementation which starts at index 0. Unlike the implementation
discussed in lecture, it should be a four -heap (not a two-heap). In other words, each node should have
four children, not two. All operations should have the efficiencies we’ve discussed in class.

Part 2: Implementing Dictionary Classes and Sorts
(2) MoveToFrontList: Another Dictionary
In this part, you will implement MoveToFrontList, a new type of Dictionary.

For the remainder of the Dictionary classes you will implement, we will not ask you to write delete–it
is possible (and you can do it for fun), but it’s not educational enough to be part of the actual project.
As a result, your Dictionary classes will inherit from DeletelessDictionary which is the same as
Dictionary except it does not require that you implement a delete method.

MoveToFrontList is a type of linked list where new items are inserted at the front of the list, and an
existing item gets moved to the front whenever it is referenced. Although it has O(n) worst-case time
operations, it has a very good amortized analysis.

You will also be implementing an Iterator for this dictionary. The runtime for all Iterator operations
should run in O(1). We will not be discussing Iterators in class so if you need, you can reference the
Iterator for BinarySearchTree.

3



MoveToFrontList relies on equality testing of elements. In Java, we deal with this by defining an
equals method. If you look in BString, it relies on CircularArrayFIFOQueue having a reasonable
definition of equality. Before MoveToFrontList will work, you will need to define the equals method
for CircularArrayFIFOQueue. You may not use toString to implement equals; we expect you to
build it from scratch. You might be wondering how to figure out the type of the parameter for equals;
in Java, the equals method takes an Object. You will want to to do research on the Java instanceof
operator, as it will be a part of your solution.

In addition to equality testing, we also need to be able to compare two Objects. To do this, you
should complete the compareTo method in CircularArrayFIFOQueue. You may not use toString to
implement compareTo; we expect you to build it from scratch.
The reason we implement this is that our tree dictionaries in the next part will need to be able to do
comparisons instead of equality testing.

Remember, in any Dictionary implementation, you may use any of your WorkList implementations.

(3) AVLTree: Another Another Dictionary
In this part, you will implement AVLTree. We recommend waiting to do this until we have discussed it
in lecture. Just like before, you do not have to implement delete. Your AVLTree should be a sub-class
of BinarySearchTree which we have written for you. Be careful to not duplicate code in rotation. You
should use an array implementation of left and right children as in BinarySearchTree. Your insert(K
key, V value) should run in O(log(n)). If your rotation code is repetitive or does not run in O(log(n)),
you will lose a substantial amount of points.

A note on AVLTree Inheritance. AVLTree extends BinarySearchTree, and BinarySearchTree has a
couple methods we might think could be useful: find(K key, V value) and find(K key). Some of
you may be trying to use the former (find(K key, V value)) to access the appropriate spot in your tree
without duplicating code, but there’s actually an issue with this: find(K key, V value) puts BSTNodes
in your AVLTree and returns them to you. These nodes can’t be cast to AVLNode (because they were
initialized as BSTNodes), and, since they are BSTNodes, they don’t have that all-important height field,
so you can’t use them.

In other words, you should not call the find(key, value) method (with a non-null second argument)
in BinarySearchTree as part of your insert method. It’s okay if you end up duplicating some of the
find(K key, V value) logic in your insert() method.

You will not need to write a separate find(key) method, though, since the behavior of that method will
be the same for both tree types, meaning that the inherited method already behaves correctly.

Recall that all BSTs rely on a reasonable definition of comparison. Our BST and your AVLTree will both
rely on the compareTo that you wrote in the previous part.

A note on debugging. You can "fail fast" by adding your verify-avl code as a private helper method,
checking validity after every modification to the tree, and throwing an exception if the check fails. This
will help you identify which sections of the code are breaking the tree. These checks will be expensive
and should be disabled in the final version, but can be helpful when debugging.

(4) ChainingHashTable: Another Another Another Dictionary
In this part, you will implement ChainingHashTable. We recommend waiting to do this until we have
discussed it in lecture. Just like before, you do not have to implement delete. Your hash table must use
separate chaining–not probing. Furthermore, you must make the type of chain generic. In particular, you
should be able to use any dictionary implementation as the type inside the buckets. Your HashTable
should rehash as appropriate (use an appropriate load factor as discussed in the class), and its capacity
should always be a prime number. Your HashTable should be able to work with uMessage which means

4



there shouldn’t be a hard cap on how much it can grow; though, it doesn’t have to use primes past
200,000.
Pick a reasonable starting size for your HashTable. You should use a hardcoded list of primes to resize
up to 200,000. Do not hard code every prime up to 200,000 - just pick a reasonable range of prime
numbers. After this point, you should continue to resize your table using some other mechanism. Note
that you MUST GROW the table past 200,000. It’s ok if you just double the size of your table when you
re-hash!

Recall that all Hash Tables rely on a reasonable definition of hash code. Just like you needed to
define equals and compareTo for various other data structures, you will need to define hashCode
in CircularArrayFIFOQueue for ChainingHashTable. You may not use toString to implement
hashCode; we expect you to build it from scratch.

At some point, you will want to test various types of chains in your ChainingHashTable. It is confusing
to do this initially; so, we have provided some examples in the NGramTester class.

(5) HashTrieMap: Full Circle!
Now that you have written your own hash map, replace the dependency on Java’s HashMap with your
ChainingHashTable! This is not only okay, it’s a great example of unexpected refactoring. Refactoring
will usually set off a chain reaction where you also have to edit other code.
You will want to look at the SimpleEntry javadoc. Remember that you may edit any class that is not in
a cse332.* package.

Here is a general guide on what to change:

• You will need to fix AutocompleteTrie.java as part of your refactor

• Some methods might become impossible to implement with ChainingHashTable. In this case, it
is okay to throw a UnsupportedOperationException.

• You will notice a mismatch between the type of iterator returned from ChainingHashTable and
the one that you need in HashTrieNode. This is an example of a common issue you run into while
refactoring code.

(a) You’ll need to add a (small) bit of code to HashTrieNode/HashTrieMap to work around this
type mismatch. You can do it using what you’ve already learned about Iterators.

(b) Note that you shouldn’t modify the ChainingHashTable.iterator() return type, because
then it wouldn’t match the Dictionary interface, and you also shouldn’t add superfluous iterator
methods to ChainingHashTable to solve a problem in HashTrieMap.

You have now written pretty much all of the data structures that you’ve used from Java’s library! You
now understand all the magic under the hood! Take a minute to bask in the glory that is data structures
nirvana.

(6) MinFourHeap and The Sorts
The MinFourHeap you wrote before was only able to compare elements in a single way (based on the
compareTo). There is a more general idea called a Comparator which allows the user to specify a
comparison function. The first thing you should do in this part is implement MinFourHeap to use a
Comparator. You can copy the logic from MinFourHeapComparable and modify the logic to use a
Comparator instead of compareTo. Make sure to modify the array type such that it no longer extend
Comparable. This is necessary to make the sorts (below) work.

5

https://docs.oracle.com/javase/8/docs/api/java/util/AbstractMap.SimpleEntry.html


After you’ve edited MinFourHeap, you will be ready to write the following sorting algorithms:

• HeapSort: Consists of two steps:
(1) Insert each element to be sorted into a heap (MinFourHeap)
(2) Remove each element from the heap, storing them in order in the original array.

• QuickSort: Implement quicksort. As with the other sorts, your code should be generic. Your
sorting algorithm should meet its expected runtime bound.

• TopKSort: An easy way to implement this would be to sort the input as usual and then just
print k largest of them. This approach finds the k largest items in time O(n lg n). However, your
implementation should have O(n lg k) runtime, assuming k is less than or equal to n. Efficiently
tracking the k largest will require a different comparator than what you used in HeapSort. TopKSort
should put the top k elements in the first k spots in the array, and all the other indices should
be null. In other words, if A = quicksort(B) for some array B, then: topKSort(k,A) =
[A[n− k], A[n− (k − 1)], . . . , A[n− 1], null, null, . . . , null].
(Hint: Use a heap, but never put more than k elements into it. Think about why this gives
O(n lg k) runtime bound).

Part 3: The Write-Up
(7) Write-Up
Approximately half of your grade will be based on your write-up. The analysis part of this project is
incredibly important, and we expect you to spend an entire week’s worth of work on it. You will find the
write-up questions here in the P2 Write-up Template. Remember to follow the instruction on the first
and second page to receive full credit!

Some of the write-up questions will ask you to design and run some experiments to determine which
implementations are faster for various inputs. Answering these questions will require writing additional
code to run the experiments, collecting operation counting or timing information and producing result
tables and graphs, together with relatively long answers. Do not wait until the last minute! We will post
more information about the difference between operation counting or timing.

Insert tables and graphs into your write-up as appropriate, and be sure to give each one a title and label
the axes for the graphs. IMPORTANT: Place all your operation counting or timing code into the
package experiment. Be careful not to leave any write-up related code in the normal files. To prevent
losing points due to the modifications made for the write-up experiments, you should copy all files that
need to be modified for the experiments into the package experiment, and start working from there.
Files in different packages can have the same name, but when editing be sure to check if you are using
the correct file! If your code does not compile because you did not follow these instructions, you will
receive a 0 for all automated tests.

You will need to write a second hashing function. To exaggerate the difference between the two hash
functions, you will want to compare a very simple hash function with a decent one (the one used in Part
2). For all experimental results, we would like to see a detailed interpretation, especially when the results
do not match your expectations.

(8) uMessage - Do not wait until the last minute for this!
Now that you are done with all of the coding (and most of the write-up) for the project, you are ready to
attempt to run uMessage. As many folks saw when they ran zip on P1, this may expose problems with
code you wrote earlier. Do not wait until the last minute for this step!

6

https://docs.google.com/document/d/1z15HOfFaDf6IJtHYOXC_z6RKw01MD6iF1jXG5aslYXQ/edit?usp=sharing


Note: When using uMessage, our course policy requires that you use your CSE or UWNetID as your
username. Using the system with a pseudonym or anything other than your netID is grounds for failing
the assignment. This is a fun program to play around with (please do!) but anyone found using the
system to annoy or harass others will be referred to the appropriate university authorities.

Before you run uMessage, you will want to do the following:

• Increase the allowed heap size in IntelliJ. In particular, uMessage runs significantly more smoothly
if you give it 6GBs of memory.

(1) On the Help menu, click Edit Custom VM Options.
(2) Set the -Xmx option to 3G without the quotation marks, so the final line should be -Xmx3G

(3) Restart IntelliJ

• Make sure your computer is plugged in. (Yes, this will make a difference.)

• Finish the getWordsAfter method in NGramToNextChoicesMap. You should replace InsertionSort
with a faster, standard sort, and if k ≥ 0, you should run TopKSort. You might have to do some-
thing more than just run TopKSort to get the most frequent words out. Figuring out exactly what
to do here is part of the challenge.

There are several variables at the top of uMessage which you will have to edit: the corpus, the “n”, the
“inner dictionary” and the “outer dictionary”. If you leave the corpus as eggs.txt, the suggestions will
be garbage. If you leave the inner and outer dictionaries as tries, uMessage will probably be too slow.
The point of uMessage is that it is a cool application that uses all of the code you wrote. Just like Zip
was a good stress test for P1, uMessage is a good stress test for P2.

Once you start working on uMessage, if you’ve implemented getWordsAfter correctly, the word sug-
gestions you get in uMessage should be sorted by frequency (conditioned on the previous words), with
highest frequency on the left and lowest frequency on the right. Note that inputs with apostrophes may
not work, (ej. can’t, wouldn’t), and throw an SSLPeerUnverifiedException. This is a bug in uMessage
and you can just ignore it :)

As a simple example, with irc.corpus, the words suggested as first words on a newly-opened chat with
nothing typed should be ["i", "and", "yeah", "well"], in that order, since those are the four words with
the highest frequency at the start of a line, with "i" being the most frequent of the four.

Trying to debug issues with your ordering code on irc.corpus will take a long time (since this corpus
takes a while to load), so it might be a good idea to make a simple test corpus with only a few sentences
where you can work out what the suggested words should be, and using that to quickly figure out
getWordsAfter.

7


	MinFourHeapComparable
	MoveToFrontList: Another Dictionary
	AVLTree: Another Another Dictionary
	ChainingHashTable: Another Another Another Dictionary
	HashTrieMap: Full Circle!
	MinFourHeap and The Sorts
	Write-Up
	uMessage - Do not wait until the last minute for this!

