
Week 7 Solutions

CSE 332



1) Parallel Prefix Sum

8 9 6 3 2 5 7 4

output

input

Goal: Output array needs to store sums of everything up to a certain 
index. Meaning:
Output[i] = input[i]+input[i-1]+input[i-



Figure out what information you 
need

8 9 6 3 2 5 7 4

output

input

Range [0-8]

Sum

FromLeft

Start off at root with the entire range of 
the problem (low=0, high=8). We need 
to find the Sum and the FromLeft 
value of the root, but we will do this in 
two passes. First pass, go down and 
split up the problem until we get to the 
cutoff of one item (high-low=1)



Divide problem into parallel pieces

8 9 6 3 2 5 7 4

output

input

Range [0-8]

Sum

FromLeft

Range [0-4]

Sum

FromLeft

Range [4-8]

Sum

FromLeft

Range [2-4]

Sum

FromLeft

Range [6-8]

Sum

FromLeft

Range [0-2]

Sum

FromLeft

Range [4-6]

Sum

FromLeft

R [0-1]

S 8

L

R [1-2]

S 9

L

R [2-3]

S 6

L

R [3-4]

S 3

L

R [4-5]

S 2

L

R [5-6]

S 5

L

R [6-7]

S 7

L

R [7-8]

S 4

L

Now, starting from the bottom,
for each node, figure out the sum
of its children. Base case is 
just the input itself.



1st pass, find sums going up.

8 9 6 3 2 5 7 4

output

input

Range [0-8]

Sum 44

FromLeft

Range [0-4]

Sum 26

FromLeft

Range [4-8]

Sum 18

FromLeft

Range [2-4]

Sum 9

FromLeft

Range [6-8]

Sum 11

FromLeft

Range [0-2]

Sum 17

FromLeft

Range [4-6]

Sum 7

FromLeft

R [0-1]

S 8

L

R [1-2]

S 9

L

R [2-3]

S 6

L

R [3-4]

S 3

L

R [4-5]

S 2

L

R [5-6]

S 5

L

R [6-7]

S 7

L

R [7-8]

S 4

L

As we go up, 
each node
sums up its 
children



2nd pass, fill out FromLeft going down

8 9 6 3 2 5 7 4

output

input

Range [0-8]

Sum 44

FromLeft 0

Range [0-4]

Sum 26

FromLeft

Range [4-8]

Sum 18

FromLeft

Range [2-4]

Sum 9

FromLeft

Range [6-8]

Sum 11

FromLeft

Range [0-2]

Sum 17

FromLeft

Range [4-6]

Sum 7

FromLeft

R [0-1]

S 8

L

R [1-2]

S 9

L

R [2-3]

S 6

L

R [3-4]

S 3

L

R [4-5]

S 2

L

R [5-6]

S 5

L

R [6-7]

S 7

L

R [7-8]

S 4

L

From left is the sum of everything

has nothing to its left, since it 
Is the entire range.



2nd pass, fill out FromLeft going down

8 9 6 3 2 5 7 4

output

input

Range [0-8]

Sum 44

FromLeft 0

Range [0-4]

Sum 26

FromLeft 0

Range [4-8]

Sum 18

FromLeft 26

Range [2-4]

Sum 9

FromLeft 17

Range [6-8]

Sum 11

FromLeft 33

Range [0-2]

Sum 17

FromLeft 0

Range [4-6]

Sum 7

FromLeft 26

R [0-1]

S 8

L 0

R [1-2]

S 9

L 8

R [2-3]

S 6

L 17

R [3-4]

S 3

L 23

R [4-5]

S 2

L 26

R [5-6]

S 5

L 28

R [6-7]

S 7

L 33

R [7-8]

S 4

L 40

is parent.fromLeft + parent.left.sum



Finally, fill out output array

8 9 6 3 2 5 7 4

output 8 17 23 26 28 33 40 44

input

Range [0-8]

Sum 44

FromLeft 0

Range [0-4]

Sum 26

FromLeft 0

Range [4-8]

Sum 18

FromLeft 26

Range [2-4]

Sum 9

FromLeft 17

Range [6-8]

Sum 11

FromLeft 33

Range [0-2]

Sum 17

FromLeft 0

Range [4-6]

Sum 7

FromLeft 26

R [0-1]

S 8

L 0

R [1-2]

S 9

L 8

R [2-3]

S 6

L 17

R [3-4]

S 3

L 23

R [4-5]

S 2

L 26

R [5-6]

S 5

L 28

R [6-7]

S 7

L 33

R [7-8]

S 4

L 40

output[this.low] = this.sum + this.fromLeft
Basically, each node at the bottom
has all the info it needs to fill out
its output array cell without relying
on data from other nodes now!



2) Parallel Prefix FindMin

8 9 6 3 2 5 7 4

output

input

Output an array with the minimum value of all cells to its left.
-1],input[i])



8 9 6 3 2 5 7 4

output

input

Range [0-8]

Min 2

FromLeft

Range [0-4]

Min 3

FromLeft

Range [4-8]

Min 2

FromLeft

Range [2-4]

Min 3

FromLeft

Range [6-8]

Min 4

FromLeft

Range [0-2]

Min 8

FromLeft

Range [4-6]

Min 2

FromLeft

R [0-1]

M 8

L

R [1-2]

M 9

L

R [2-3]

M 6

L

R [3-4]

M 3

L

R [4-5]

M 2

L

R [5-6]

M 5

L

R [6-7]

M 7

L

R [7-8]

M 4

L

of its children, and the min of everything to its left. 

First pass, each node need only
look at its children to figure out 
what its min should be, so fill 
everything up from bottom up



8 9 6 3 2 5 7 4

output 8 8 6 3 2 2 2 2

input

Range [0-8]

Min 2

FromLeft none

Range [0-4]

Min 3

FromLeft none

Range [4-8]

Min 2

FromLeft 3

Range [2-4]

Min 3

FromLeft 8

Range [6-8]

Min 4

FromLeft 2

Range [0-2]

Min 8

FromLeft none

Range [4-6]

Min 2

FromLeft 3

R [0-1]

M 8

L none

R [1-2]

M 9

L 8

R [2-3]

M 6

L 8

R [3-4]

M 3

L 6

R [4-5]

M 2

L 3

R [5-6]

M 5

L 2

R [6-7]

M 7

L 2

R [7-8]

M 4

L 2

Second pass, we need to fill everything starting from the root going down.

Fill out the min value from 

the fromLeft variable.
Each right node looks at its 

min values.


