3) Quicksort Recurrence Relations

- Recall that sequential Quicksort consists of
- O(1) Picking a pivot
- O(n) Partition data into
- A: Less than pivot
- B: Pivot
- C: Greater than pivot
$-2 T(n / 2)-$ Recursively, sort each of the two halves, A and C .
- $T(n)=1+n+2 T(n / 2)=O(n \log n)$

To parallelize step 3 (recursion)

- Each partition can be done at the same, so $2 \mathrm{~T}(\mathrm{n} / 2)$ becomes time $1 \mathrm{~T}(\mathrm{n} / 2)$
- Whole relation becomes: $T(n)=1+n+T(n / 2)$
- Ignoring the constant time pivot-picking:
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+\mathrm{T}(\mathrm{n} / 2)$

Solve recurrence relation

- $T(n)=n+T(n / 2)$ Assume $T(1)=C$, that is, that to sort 1 element
- $T(n)=n+(n / 2+T(n / 4))$ takes a constant C units of time.
- $T(n)=n+(n / 2+(n / 4+T(n / 8)))$
- $T(n)=n^{*}\left(1+1 / 2+1 / 4+\ldots+1 / 2^{k-1}\right)+T\left(n / 2^{k}\right)$

Substitute in base case $\mathrm{T}(1)=1$ and solve for k :
$\mathrm{n} / 2^{\mathrm{k}}=1$
$k=\log n$

- $T(n)=n^{*}\left(1+1 / 2+1 / 4+\ldots+1 / 2^{\log n-1}\right)+C$
- Sum of geometric series (1+1/2+1/4+...) converges to 2
- $T(n)=2 n+C$ which is $O(n)$, linear

4) Parallelizing step 2, partition

- Do 2 filters, one to filter less-than-pivot partition, one to filter greater-than-pivot partition.
- Filter is work $\mathrm{O}(\mathrm{n})$, span $\mathrm{O}(\log \mathrm{n})$
- So total quicksort is now
(partition+recursion):
- $T(n)=O(\log n)+T(n / 2)$

Solve recurrence relation

- $T(n)=\log n+T(n / 2)$ expand out recurrence
- $T(n)=\log n+(\log (n / 2)+T(n / 4))$
- $T(n)=\log n+\log (n / 2)+\log (n / 4)+T(n / 8)$
- $T(n)=\log n+\log (n / 2)+\log (n / 4)+\log (n / 8)+T(n / 16)$
- $T(n)=\log n+(\log n-\log 2)+(\log n-\log 4)+(\log n-\log 8)+$ $T(n / 16)$
- $T(n)=4^{*} \log n-\log 2-\log 4-\log 8+T(n / 16)$
- $T(n)=4^{*} \log n-1-2-3+T\left(n / 2^{\wedge} 4\right)$ because we're doing log base 2
- $T(n)=k^{*} \log n-(1+2+3+\ldots+(k-1))+T\left(n / 2^{\wedge} k\right)$
- $T(n)=k^{*} \log n-(k(k-1)) / 2+T\left(n / 2^{\wedge} k\right)$
- As usual, assuming $T(1)=C$, set $n / 2^{\wedge} k=1$, gives $k=\log n$
- $T(n)=(\log n)^{*}(\log n)-((\log n-1)(\log n)) / 2+C$
- $T(n)=(\log n)^{*}(\log n)-((\log n * \log n)-\log n) / 2+C$
- Which is $O(\log n * \log n)$

