
3) Quicksort Recurrence 
Relations

Recall that sequential Quicksort consists 
of

O(1) Picking a pivot

O(n) Partition data into
A: Less than pivot

B: Pivot

C: Greater than pivot

2 T(n/2) Recursively, sort each of the two 
halves, A and C.

T(n)=1+n+2T(n/2) = O(n log n)



To parallelize step 3 (recursion)

Each partition can be done at the same, 
so 2T(n/2) becomes time 1 T(n/2)

Whole relation becomes: T(n)=1+n+T(n/2)

Ignoring the constant time pivot-picking:

T(n) = n + T(n/2)



Solve recurrence relation
T(n) = n + T(n/2)

T(n) = n + (n/2 + T(n/4))

T(n) = n + (n/2 + (n/4 + T(n/8)))
k-1)+T(n/2k)

logn-1)+C

converges to 2

T(n) = 2n+C which is O(n), linear

Assume T(1)=C, that is, 
that to sort 1 element 
takes a constant C 
units of time.

Substitute in base case T(1)=1 and solve for k:
n/2k=1
k = log n



4) Parallelizing step 2, partition

Do 2 filters, one to filter less-than-pivot 
partition, one to filter greater-than-pivot 
partition.

Filter is work O(n), span O(log n)

So total quicksort is now 
(partition+recursion):

T(n) = O(log n) + T(n/2)



Solve recurrence relation

T(n) = log n + T(n/2) expand out recurrence

T(n) = log n + (log(n/2) + T(n/4))

T(n) = log n + log(n/2) + log(n/4) + T(n/8)

T(n) = log n + log(n/2) + log(n/4) + log(n/8) + T(n/16)

T(n) = log n +(log n log 2) + (log n log 4) + (log n log 8) + 
T(n/16)

T(n) = 4*log n log 2 log 4 log 8 + T(n/16)

T(n) = 4*log n 1 2 3 + T(n/2^4)

T(n) = k*log n - -1))+T(n/2^k)

T(n) = k*log n (k(k-1))/2 + T(n/2^k)

As usual, assuming T(1)=C, set n/2^k=1, gives k=log n

T(n) = (log n)*(log n) ((log n-1)(log n))/2 + C

T(n) = (log n)*(log n) ((log n * log n)-log n)/2 + C

Which is O(log n * log n)


