2. Parallel Quicksort

(a) Show that Quicksort with sequential partitioning, but parallel recursive sorting, is indeed $\mathcal{O}(n)$, by solving the recurrence relation shown in lecture: $\mathsf{T}(n) = n + \mathsf{T}(n/2)$.

(b) Show that a completely parallel Quicksort, with parallel partition and recursion, is $\mathcal{O}(log^2(n))$, by solving the recurrence relation shown in lecture: $\mathsf{T}(n) = \mathcal{O}(log(n)) + \mathsf{T}(n/2)$.