
4. The-ta Knows Best! [6 points]
For each of the following, give a ⇥(�) bound, in terms of n, for the worst case runtime of the method.

(a) (2 points)

1 int hello(int n) {
2 if (n == 0) {
3 return 0;
4 }
5 for (int i = 0; i < n; i++) {
6 for (int j = 0; j < n ⇤ n; j++) {
7 System.out.println("HELLO");
8 }
9 }

10 return hello(n � 1);
11 }

Runtime

(b) (2 points)

1 void whee(int n) {
2 for (int i = 1; i < n; i ⇤= 2) {
3 for (int j = 1; j < n; j ⇤= 3) {
4 System.out.println("WHEE!");
5 }
6 }
7 for (int k = n/2; k < n; k++) {
8 System.out.println("WOAH!");
9 }

10 }

Runtime

(c) (2 points)

1 void flipflop(int n, int sum) {
2 if (n > 10000) {
3 for (int i = 0; i < n ⇤ n ⇤ n; i++) {
4 sum++;
5 }
6 }
7 else {
8 for (int i = 0; i < n ⇤ n ⇤ n ⇤ n; i++) {
9 sum++;

10 }
11 }
12 }

Runtime

Page 3 of 10



7 Writing A Recurrence

[6 points] Write a recurrence describing the running time of the recursive code below. Use
constants like c

1

and c
2

when describing the number of operations: you do not have to give
an exact count.

You do not need to solve for a closed form of THIS recurrence

int foobar(int n){

if(n <= 15){

return 2n + 8

}

else{

for(int i = 0; i < n; i++){

for(int j = 0; j < i; j++){

print i

}

}

return foobar(n/2) * foobar(n-3) + n

}

}

T (n) =

8
><

>:

Don’t find a closed form of this recurrence.

8



8 Solving A Recurrence

[15 points] In this problem you will find a closed form of the following recurrence, and check
your answer with the Master Theorem.

T (n) =

(
3 if n = 1

4T (n/2) + 2n2 otherwise

1. Solve the recurrence. Your final answer should not have any recursion or summations,
but need not “look nice.” You should not simplify to a big-⇥ answer in this part,
keep all the exact constants in your answer. You may use either unrolling or the tree
method. In either case, you must show your work for ANY credit. The list of steps
for the tree method and the list of summations on the last page may come in handy.

2. Use the Master Theorem (see the last page) to get a big-⇥ bound on the recurrence.

9



B-Trees 
 
Below is a B-Tree storing integer keys with character values. Insert the (key, value) pairs (3, F) 
and (1, W) in that order into the B-Tree below. You should draw two B-Trees: one for after (3, F) 
was inserted and one after both were inserted. 
 
 
 
 
 
 
         2   A         5     F          8      Z 
 
         4   B         6     G          9      Y 
 
                   7     E 
 
 



10 of 10 

9. (9 pts) B-trees 
a) (1 pt) In the ORIGINAL B-Tree shown below, add values for the interior nodes. 
b) (4 pts) Starting with the ORIGINAL B-tree shown below, in upper box, draw the tree 

resulting after inserting the value 50 (including values for interior nodes).  Use the 
method for insertion described in lecture and in the book.   

c) (4 pts) Starting with the ORIGINAL B-tree shown below, in the lower box, draw the 
tree resulting after deleting the value 14 (including values for interior nodes).  Use 
the method for deletion described in lecture and in the book.   
 

ORIGINAL:  

 
 

 
 
 
 
 
 
 

 

2 

7 

14 

20 

          

     

  

58 

65 

 

86 

95 

 

38 

40 

49 

 

    

 

   After inserting 50: 

   After deleting 14: 




