
CSE 332: Data Structures and Parallelism
Section 3: BSTs and Recurrences Solutions

0. Recurrences and Closed Forms
For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a

closed form for the recurrence.

Consider the function f :

1 f(n) {
2 if (n <= 0) {
3 return 1;
4 }
5 return 2 * f(n � 1) + 1;
6 }

• Find a recurrence for f(n).

Solution:

T (n) =

(
c0 if n <= 0

T (n� 1) + c1 otherwise

• Find a closed form for f(n).

Solution:
Unrolling the recurrence, we get T (n) = c1 + c1 + · · ·+ c1| {z }

n times

+c0 = c1n+ c0.

1



1. Recurrences and Big-Oh Bounds
Consider the function f . Find a recurrence modeling the worst-case runtime of this function and then find a

Big-Oh bound for this recurrence.

1 f(n) {
2 if (n == 0) {
3 return 0
4 }
5
6 int result = 0
7 for (int i = 0; i < n; i++) {
8 for (int j = 0; j < i; j++) {
9 result += j

10
11 }
12 }
13 return f(n/2) + result + f(n/2)
14 }

(a) Find a recurrence T (n) modeling the worst-case time complexity of f(n).

Solution:
We look at the three separate components (base case, non-recursive work, recursive work). The base case

is a constant amount of work, because we only do a return statement. We’ll label it c0. The non-recursive

work is a constant amount of work (we’ll call it c1) for the assignments and if tests and a constant (we’ll

call c2) multiple of

n�1X

i=0

i =
n(n� 1)

2
for the loops. The recursive work is 2T

�
n
2

�
.

Putting these together, we get:

T (n) =

(
c0 if n = 0

2T
�
n
2

�
+ c2

n(n�1)
2 + c1 otherwise

(b) Find a Big-Oh bound for your recurrence.

Solution:
Since we only want a Big-Oh, we can actually leave o� lower-order terms when doing our analysis, as they

won’t a�ect the runtime bounds; so, we can ignore the constants c1 and c2 in our analysis.

Note that
n(n� 1)

2
=

n2

2
�

n

2
2 O(n2). We can, again, ignore the lower-order term (

n
2 ) since we only

want a Big-Oh bound.

The recursion tree has lg(n) height, each non-leaf node of the tree does

⇣ n
2i

⌘2
work, each leaf node does

c0 work, and each level has 2i nodes.

So, the total work is

blg(n)c�1X

i=0

2i
⇣ n
2i

⌘2
+ c0 · 2

lgn = n2
blg(n)c�1X

i=0

✓
2i

4i

◆
+ c0n < n2

1X

i=0

✓
1

2i

◆
+ c0n =

n2

1� 1
2

+ c0n.

This expression is upper-bounded by n2
so T 2 O(n2).

2



2. Recurrences and Closed Forms
Consider the function g. Find a recurrence modeling the worst-case runtime of this function, and then find a

closed form for the recurrence.

1 g(n) {
2 if (n <= 1) {
3 return 1000
4 }
5 if (g(n/3) > 5) {
6 for (int i = 0; i < n; i++) {
7 println("Yay!")
8 }
9 return 5 * g(n/3)

10 }
11 else {
12 for (int i = 0; i < n * n; i++) {
13 println("Yay!")
14 }
15 return 4 * g(n/3)
16 }
17 }

(a) Find a recurrence T (n) modeling the worst-case time complexity of g(n).

Solution:

T (n) =

(
c0 if n  1

2T
�
n
3

�
+ c1n otherwise

(b) Find a closed form for the above recurrence.

Solution:
The recursion tree has height log3(n), each non-leaf level i has work

c1n2i

3i , and the leaf level has work

c02log3(n). Putting this together, we have:

log3(n)�1X

i=0

✓
c1n2i

3i

◆
+ c02

log3(n) = c1n

log3(n)�1X

i=0

✓
2

3

◆i

+ c0n
log3(2)

= c1n

 
1�

�
2
3

�log3(n)

1� 2
3

!
+ c0n

log3(2) By finite geometric series

= 3c1n

 
1�

✓
2

3

◆log3(n)
!

+ c0n
log3(2)

= 3c1n

 
1�

nlog3(2)

n

!
+ c0n

log3(2)

= 3c1n� 3c1n
log3(2) + c0n

log3(2)

3



3. Runtime Complexity
Consider the function h:

1 h(n) {
2 if (n <= 1) {
3 return 1
4 } else {
5 return h(n/2) + n + 2*h(n/2)
6 }
7 }

(a) Find a recurrence T (n) modeling the worst-case runtime complexity of h(n).

Solution:
T (n) =

(
c0 if n  1

2T
�
n
2

�
+ c1 otherwise

(b) Find a closed form to your answer for (a).

Solution:
The recursion tree has height lg(n), each non-leaf level i has has work c12i, and the leaf level has work

c02lg(n). Putting this together, we have:

 
lgn�1X

i=0

c12
i

!
+ c02

lg(n) = c1

 
lgn�1X

i=0

2i
!

+ c0n = c1
1� 2lgn�1+1

1� 2
+ c0n

= c12
lgn

� c1 + c0n

= c1(n� 1) + c0n

= (c0 + c1)n� c1

4


