CSE 332: Data Structures & Parallelism
Lecture 16: Parallel Prefix, Pack, and Sorting

Ruth Anderson
Winter 2019
Outline

Done:

– Simple ways to use parallelism for counting, summing, finding
– Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible

– Parallel prefix:
 • This “key trick” typically underlies surprising parallelization
 • Enables other things like packs (aka filters)
– Parallel sorting: quicksort (not in place) and mergesort
 • Easy to get a little parallelism
 • With cleverness can get a lot
The prefix-sum problem

Given \texttt{int[]} \texttt{input}, produce \texttt{int[]} \texttt{output} where:

\[
\text{output}[i] = \text{input}[0] + \text{input}[1] + \ldots + \text{input}[i]
\]

\begin{tabular}{l|l|l|l|l|l|l|l}
\textbf{input} & 6 & 4 & 16 & 10 & 16 & 14 & 2 & 8 \\
\textbf{output} & 6 & 10 & 26 & 36 & 52 & 66 & 68 & 76 \\
\end{tabular}

Sequential can be a CSE142 exam problem:

\begin{verbatim}
int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;
}
\end{verbatim}

Does not seem parallelizable

- Work: $O(n)$, Span: $O(n)$
- \textit{This algorithm} is sequential, but a \textit{different algorithm} has Work: $O(n)$, Span: $O(\log n)$
Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So like with array summing, parallelism is \(n/\log n \)
 - An exponential speedup

- First pass builds a tree bottom-up: the “up” pass

- Second pass traverses the tree top-down: the “down” pass
Local bragging

Historical note:
- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? 1973? recent
Parallel Prefix: The Up Pass

We build want to build a binary tree where

- Root has sum of the range \([x,y)\)
- If a node has sum of \([lo,hi)\) and \(hi>lo\),
 - Left child has sum of \([lo,middle)\)
 - Right child has sum of \([middle,hi)\)
 - A leaf has sum of \([i,i+1)\), which is simply input\([i]\)

It is critical that we actually create the tree as we will need it for the down pass

- We do not need an actual linked structure
- We could use an array as we did with heaps

Analysis of first step: Work = Span =
The algorithm, part 1

Specifically.....

1. Propagate ‘sum’ up: Build a binary tree where
 – Root has sum of `input[0]..input[n-1]`
 – Each node has sum of `input[lo]..input[hi-1]`
 • Build up from leaves; `parent.sum=left.sum+right.sum`
 – A leaf’s sum is just it’s value; `input[i]`

This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges
 – Tree built bottom-up in parallel
 – Could be more clever; ex. Use an array as tree representation like we did for heaps

Analysis of first step: \(O(n)\) work, \(O(\log n)\) span
The (completely non-obvious) idea:
Do an initial pass to gather information, enabling us to do a second pass to get the answer

First we’ll gather the ‘sum’ for each recursive block

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First pass

For each node, get the sum of all values in its range; propagate sum up from leaves.

Will work like parallel sum, but recording intermediate information.

input

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>16</td>
<td>10</td>
<td>16</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>

output

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2/20/2019
The algorithm, part 2

2. Propagate ‘fromleft’ down:
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 • Passes its left child the same fromLeft
 • Passes its right child its fromLeft plus its left child’s sum (as stored in part 1)
 - At the leaf for array position i,
 \(\text{output}[i] = \text{fromLeft} + \text{input}[i] \)

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to output)

- Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: \(O(n) \) work, \(O(\log n) \) span
Analysis of second step:

Total for algorithm:
The algorithm, part 2

2. Propagate ‘from left’ down:
 – Root given a \texttt{fromLeft} of 0
 – Node takes its \texttt{fromLeft} value and
 • Passes its left child the same \texttt{fromLeft}
 • Passes its right child its \texttt{fromLeft} plus its left child’s \texttt{sum}
 (as stored in part 1)
 – At the leaf for array position i,

 $$\text{output}[i] = \text{fromLeft} + \text{input}[i]$$

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to \texttt{output})

– Invariant: \texttt{fromLeft} is sum of elements left of the node’s range

Analysis of first step: $O(n)$ work, $O(\log n)$ span
Analysis of second step: $O(n)$ work, $O(\log n)$ span
Total for algorithm: $O(n)$ work, $O(\log n)$ span
Second pass

Using ‘sum’, get the sum of everything to the left of this range (call it ‘fromleft’); propagate down from root

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>
Sequential cut-off

Adding a sequential cut-off isn’t too bad:

• **Step One**: Propagating Up the sums:
 – Have a leaf node just hold the sum of a range of values instead of just one array value (Sequentially compute sum for that range)
 – The tree itself will be shallower

• **Step Two**: Propagating Down the fromLefts:
 – Have leaf compute prefix sum sequentially over its [lo,hi):

    ```
    output[lo] = fromLeft + input[lo];
    for(i=lo+1; i < hi; i++)
        output[i] = output[i-1] + input[i]
    ```
Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of i

- Is there an element to the left of i satisfying some property?

- Count of elements to the left of i satisfying some property
 - This last one is perfect for an efficient parallel pack…
 - Perfect for building on top of the “parallel prefix trick”
Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that $f(\text{element})$ is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?

– Determining whether an element belongs in the output is easy
– But determining where an element belongs in the output is hard; seems to depend on previous results....
Parallel Pack = (Soln) parallel map + parallel prefix + parallel map

1. **Parallel map** to compute a **bit-vector** for true elements:
 - input \([17, 4, 6, 8, 11, 5, 13, 19, 0, 24]\)
 - bits \([1, 0, 0, 0, 1, 0, 1, 1, 0, 1]\)

2. **Parallel-prefix sum** **on the bit-vector**:
 - bitsum \([1, 1, 1, 1, 2, 2, 3, 4, 4, 5]\)

3. **Parallel map** to produce the output:
 - output \([17, 11, 13, 19, 24]\)

   ```java
   output = new array of size bitsum[n-1]
   FORALL (i=0; i < input.length; i++){
   }
   ```

In this example, Filter = element > 10
Pack comments

• First two steps can be combined into one pass
 – Just using a different base case for the prefix sum
 – No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
 – Again no effect on asymptotic complexity

• Analysis: $O(n)$ work, $O(\log n)$ span
 – 2 or 3 passes, but 3 is a constant 😊

• Parallelized packs will help us parallelize quicksort…
Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 A. The elements less than the pivot $O(n)$
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C $2T(n/2)$

Recurrence (assuming a good pivot):
 $T(0)=T(1)=1$
 $T(n)=\text{__________________________}$

Run-time: $O(n\log n)$

How should we parallelize this?
Review: Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[T(n) = O(1) + T(n-1) \quad \text{linear} \]
\[T(n) = O(1) + 2T(n/2) \quad \text{linear} \]
\[T(n) = O(1) + T(n/2) \quad \text{logarithmic} \]
\[T(n) = O(1) + 2T(n-1) \quad \text{exponential} \]
\[T(n) = O(n) + T(n-1) \quad \text{quadratic} \]
\[T(n) = O(n) + T(n/2) \quad \text{linear} \]
\[T(n) = O(n) + 2T(n/2) \quad O(n \log n) \]

Note big-Oh can also use more than one variable
- Example: can sum all elements of an \(n \)-by-\(m \) matrix in \(O(nm) \)
Parallel Quicksort (version 1)

1. Pick a pivot element \(O(1)\)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n)\)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2)\)

First: Do the two recursive calls in parallel

- **Work:**
- **Span:** now recurrence takes the form:

Span:
Doing better

- $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort 10^9 elements 30 times faster

- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong 😊
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl’s Law…(exposing parallelism is important!)

- Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

• This is just two packs!
 - We know a pack is $O(n)$ work, $O(\log n)$ span
 - Pack elements less than pivot into left side of aux array
 - Pack elements greater than pivot into right size of aux array
 - Put pivot between them and recursively sort
 - With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

• With _________ span for partition, the total span for quicksort is $T(n) =$
Parallel Quicksort Example (version 2)

- Step 1: pick pivot as median of three

```
8 1 4 9 0 3 5 2 7 6
```

- Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 - Fancy parallel prefix to pull this off (not shown)

```
1 4 0 3 5 2
1 4 0 3 5 2 6 8 9 7
```

- Step 3: Two recursive sorts in parallel
 - Can sort back into original array (like in mergesort)
Parallelize Mergesort?

Recall mergesort: sequential, **not**-in-place, worst-case $O(n \log n)$

1. Sort left half and right half $\quad 2T(n/2)$
2. Merge results $\quad O(n)$

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the **Span** to $T(n) = O(n) + 1T(n/2) = O(n)$

- Again, **Work** is $O(n \log n)$, and
- parallelism is work/span = $O(\log n)$
- To do better, **need to parallelize the merge**
 - The trick won’t use parallel prefix this time…
Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Idea: Suppose the larger subarray has m elements. In parallel:

- Merge the first $m/2$ elements of the larger half with the “appropriate” elements of the smaller half
- Merge the second $m/2$ elements of the larger half with the rest of the smaller half
Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size)

Idea: Recursively divide subarrays in half, merge halves in parallel

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Suppose the larger subarray has \(m \) elements. In parallel:

- Pick the **median** element of the larger array (here 6) in constant time
- In the other array, use binary search to find the first element greater than or equal to that median (here 7)

Then, in parallel:

- Merge half the larger array (from the median onward) with the upper part of the shorter array
- Merge the lower part of the larger array with the lower part of the shorter array
Example: Parallelizing the Merge

```
0 4 6 8 9
1 2 3 5 7
```
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
3. Two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel
Example: Parallelizing the Merge

0 4 6 8 9
1 2 3 5 7

merge
0 4 1 2 3 5
merge
6 8 9 7

merge
0 4 1 2 3 5
merge
6 8 9 7

merge
0 1 2
merge
4 3 5
merge
6 8 7 9

merge
0 1 2
merge
4 3 5
merge
6 8 7 9

merge
0 1 2 3 4 5 6 7 8 9
Example: Parallelizing the Merge

When we do each merge in parallel:
- we split the bigger array in half
- use binary search to split the smaller array
- And in base case we do the copy
Parallel Merge Pseudocode

Merge(arr[], left_1, left_2, right_1, right_2, out[], out_1, out_2)

 int leftSize = left_2 – left_1
 int rightSize = right_2 – right_1
 // Assert: out_2 – out_1 = leftSize + rightSize
 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)
 sequential merge and copy into out[out_1..out_2]

 int mid = (left_2 – left_1)/2
 binarySearch arr[right_1..right_2] to find j such that
 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left_1, mid, right_1, j, out[], out_1, out_1+mid+j)
 Merge(arr[], mid+1, left_2, j+1, right_2, out[], out_1+mid+j+1, out_2)
Analysis

• **Sequential** mergesort:
 \[T(n) = 2T(n/2) + O(n) \] which is \(O(n \log n) \)

• Doing the *two recursive calls in parallel* but a **sequential merge**:
 Work: same as sequential
 Span: \(T(n) = T(n/2) + O(n) \) which is \(O(n) \)

• **Parallel merge** makes **work** and **span** harder to compute…
 – Each merge step does an extra \(O(\log n) \) binary search to find how to split the smaller subarray
 – To merge \(n \) elements total, do two smaller merges of possibly different sizes
 – But worst-case split is \((3/4)n \) and \((1/4)n \)
 • Happens when the two subarrays are of the same size \((n/2) \) and the “smaller” subarray splits into two pieces of the most uneven sizes possible: one of size \(n/2 \), one of size 0

2/20/2019
Analysis continued

For **just** a parallel merge of n elements:
- **Work** is $T(n) = T(3n/4) + T(n/4) + O(\log n)$ which is $O(n)$
- **Span** is $T(n) = T(3n/4) + O(\log n)$, which is $O(\log^2 n)$
- (neither bound is immediately obvious, but “trust me”)

So for **mergesort** with *parallel merge* overall:
- **Work** is $T(n) = 2T(n/2) + O(n)$, which is $O(n \log n)$
- **Span** is $T(n) = 1T(n/2) + O(\log^2 n)$, which is $O(\log^3 n)$

So parallelism (work / span) is $O(n / \log^2 n)$
 - Not quite as good as quicksort’s $O(n / \log n)$
 - But (unlike Quicksort) this is a worst-case guarantee
 - And as always this is just the asymptotic result