
CSE 332: Data Structures and Parallelism Winter 2019
Setting Up Your CSE 332 Environment

This document guides you through setting up Eclipse for CSE 332. The first section covers using gitlab to
access and update your project repos (required). The second section introduces Viz for Eclipse (optional), which
allows you to visualize your programs and aids in debugging your projects. The third section provides setup
instructions for Saros (optional), a tool which can be useful for online collaboration when peer programming.
If you run into any problems or questions when setting up or using any of these plug-ins, feel free to ask on
Piazza or during office hours!

Part 1: GitLab and Submitting Projects
We will be using gitlab.cs.washington.edu to submit homeworks and give feedback. gitlab is a web-based
git hosting service which is similar to github but hosted locally by the CSE Department. You will need to
learn basic git to be able to work on and submit your homework.

Downloading Eclipse
The first thing you should do is download the newest version of Eclipse. This is important, because we will
be using plugins that were not included in old versions of Eclipse. To download Eclipse, go to:

https:
//www.eclipse.org/downloads/packages/release/2018-12/r/eclipse-ide-java-developers

Generating an SSH Key
The first time you clone from gitlab, you will need to create an SSH key. To do this, follow these steps:

(1) Open Eclipse Preferences and type “ssh” into the box, then select the “SSH2” pane.
(2) Click the “Key Management” tab and click “Generate RSA Key”.
(3) Type your UWNetID into the “Comment” box.
(4) Click “Save Private Key” and choose somewhere safe.
(5) Copy the text starting with “ssh-rsa” in the box and go to

https://gitlab.cs.washington.edu/profile/keys

(6) Paste the text you copied into the box on gitlab, choose a title for the key, and click “Add key”.
(7) You have now installed an SSH key, and you’re ready to use git!

1

gitlab.cs.washington.edu
https://www.eclipse.org/downloads/packages/release/2018-12/r/eclipse-ide-java-developers
https://www.eclipse.org/downloads/packages/release/2018-12/r/eclipse-ide-java-developers
https://gitlab.cs.washington.edu/profile/keys


Creating The Eclipse Project
Eclipse uses the concept of projects to organize your files. Each project in the course will have its own project in
Eclipse. We will create the project in Eclipse by cloning a git repository on gitlab which contains the starter
code. To do this, follow these steps:

(1) Go to File > Import in the Eclipse menubar.
(2) Type “git” into the box; continue by choosing “Projects from Git” and “Clone URI”:

(3) The next dialog will ask you to enter the source of your git repository.
Ignore the URI field, and fill in the following fields:

• Host: git@gitlab.cs.washington.edu
• Repository Path: cse332-19wi/p1-bulbasaur.git
• Protocol: ssh

A bold phrase in the repository path means you should substitute it with your equivalent.
Do not forget the .git at the end!

(4) Click “Next” repeatedly, leaving all subsequent settings at their default values.
In particular, make sure to leave the “Wizard for project import” selection set to “Import existing Eclipse
projects”. Finally, click “Finish ”, and you should have a new project in Eclipse!

2



Committing, Pushing, and Pulling
git is the version control system (VCS) underlying gitlab. Most real projects are kept in a VCS to avoid
losing data, and for the ability to easily revert code back to older versions. Another major reason VCS’s are
important is that they allow you to effectively work together with other people. They allow you to combine
(“merge”) several different versions of your codebase together.

Un-
committed

In Git

eclipse gitlab

Un-
committed

In Git

Partner’s Computer

Co
m

m
it

Com
m

it

Push

Pull Pull

Push

As shown in the diagram, there are several major actions you can do with respect to your git repository:

• Commit: A “commit” is a set of changes that go together. By “committing” a file, you are asking git to
“mark” that it has changed. git requires that you give a message summarizing the effect of your changes.
An example commit message might be “Add error handling for the empty queue case in ListFIFOQueue”.

• Push: A “push” sends your commits to another version of the repository (in our case, this will almost
always be gitlab). If you do not push your commits, nobody else can see them!

• Pull: A “pull” gets non-local commits and updates your version of the repository with them. If you and
someone else both edited a file, git will ask you to explain how to merge the changes together (this
process is called “resolving a merge conflict”).

Using Git in Eclipse
Eclipse provides a GUI for all of the git operations. We now explain how to handle a git workflow in Eclipse.

Open Git Staging View
Your main tool to use git in Eclipse is called the “staging view”. This view allows you to see changed files,
make commits, and write commit messages. To open the staging view, type “git staging” into the box labeled
“Quick Access” in the top right of the Eclipse window, then select “Git Staging (Git)” from the list of results.

3



How Staging/Committing Works

After Pushing
After you “Commit and Push”, you will get one of several message dialogs:

Success! Rejected!

If you get a “success” message, then your code has been pushed, and you’re good to go. If you get a “rejected”
message, it means your partner pushed code; you will need to pull before pushing will work. Note that when
you pull, you might have a merge conflict which you will have to fix before pushing.

4



Pulling
There are two reasons to pull: (1) you want to get the changes your partner made, or (2) you want to push
your changes, but they were rejected because of a conflict.
To pull in Eclipse, click the following menu option (also available as “Pull” in Quick Access):

The result will either indicate that you pulled cleanly or that there is a merge conflict.
The best way to tell if you currently have a conflict is to look for the red diamond icon in the list of
files.

If you see a DIRTY_WORKTREE error when attempting to pull, then you have uncommitted local changes which
conflict with changes on gitlab.

To resolve this error, you should first commit (but do not push) all local changes, then pull, and then merge
any conflicts using the procedure described on the following page.

5



Merging a Conflict
If you have any items that have a conflict (red diamond icon), you can fix them using the merge tool :

The merge tool allows you to see your changes (on the left) and other peoples’ changes (on the right). Your
job is to make the file on the left be the result you actually want. Once you’ve done this, drag the merged file
to the “staged changes” panel like usual. You will notice that there is an auto-filled commit message about
a “merge”. Go ahead and “Commit and Push”. Now, you’ve pushed your commits and other people can see
them!

Submitting Your Final Version
In some courses, you are asked to “tag” your final commit. We will not ask you to do this. The last commit
you make within the deadline will be the one we grade.

Resetting SSH Issues
Sometimes Eclipse will get in a state where SSH cloning of projects does not work (even when you’ve created
a new key from scratch). A superset of the steps required to reset any Eclipse SSH issue is:

(a) Remove all previous keys in Preferences > General > Network Connections > SSH2 > Private
Keys.

(b) Move, rename, or delete the previous SSH2 home folder. For example, if my SSH2 home folder was in
∼/.ssh, I could move it to ∼/.ssh2.

(c) Generate a new SSH key and save it in a new location, then add it to gitlab.

(d) Restart Eclipse (This is important!)

(e) Clone the project in Eclipse using the instructions provided at the top of this document.

Completing these steps should resolve Eclipse SSH issues (which typically surface as a password prompt during
the project cloning process).

6



Part 2: Setting up Viz for Eclipse
This section will help you get started with Viz for Eclipse. Viz allows you to visualize your program’s data
structures, which can be useful for debugging.

(a) After installing Eclipse (see first section of this document), start Eclipse and go to Help > Install New
Software...
The following window should appear:

Click on the Add... button and you should see the following window appear:

(b) In the input labeled “Location”, enter

http://courses.cs.washington.edu/courses/cse332/17wi/eclipse/site.xml

and click OK.

7



You should then see the following:

Make sure that the checkbox is checked, and then click Next twice. Eclipse should then prompt you to
confirm license agreements and finish the installation process (do so), after which you should be prompted
to restart Eclipse.

(c) After restarting Eclipse, you should see a new tab on the right of the screen for Viz.

This is the “Viz” visualization tool, which will allow you to see the state of your program and data
structures during a debugging session.
If you don’t see it, type “vis” into the Quick Access bar and wait for a suggestion to pop up. You should
see an option to open the Visualization view, as shown below (if you don’t, there’s probably something
else going on, and you should post your issue on Piazza or go to office hours for staff to help):

(d) Viz is now ready to go! To test it out, try writing a small program involving a data structure (e.g., an array
of integers) and starting a debugging session. We provide an example walkthrough of a Viz debugging
session in the following section.

8



Example Viz Walkthrough
In this example, we will use Viz to see how a running total of an array of integers is calculated, demonstrating
method calls, data structure visualization (for an array, in this case), and loop iteration.

(a) To start a debugging session, click the small bug icon at the top bar of your Eclipse environment (shown
in the top-left corner of the screenshot below) and you should then see the following in the Viz pane:

(b) To move through a program, you can use the “Step Over” command to step to the next line in the current
method, and the “Step Into” command to step into a method at the current line. Here, we want to step
over until we get to line 4 where the runningTotal method is called.

Once you see the blue arrow (indicating your current line) at line 4, click on the “Step into” command:

9



You should then see the following in Viz, indicating that you are now in the runningTotal method:

(c) Now is where you’ll really get to see Viz in action! Use the “Step Over” command to iterate through the
loop and see the sum value update as it is incremented in each iteration. Once you reach the end of your
method, the blue arrow will point to the last statement in the method:

10



(d) Once you click “Step over” from here, the method and its variables will be removed from the Viz pane,
and Viz will return to the caller of the removed method. In our example, this looks like the following:

From here, you can continue stepping over until you reach the end of main, where your debugging session
will exit.

We’ve demonstrated the use of Viz for a simple program, but its value as a debugging tool is most useful when
dealing with nested methods and complex data structures.
In addition to helping you visualize programs, Viz also lets you save an image or gif of your visualization at any
time when you select the associated option (“Save Visualization” or “Star Recording Visualization”), as shown
below:

Additionally, you can change the animation speeds (which affect how fast different data structures update/change
references) and zoom in/out using the corresponding sliders on the Viz toolbar. Enjoy experimenting with Viz
as you learn new data structures throughout the quarter, and if you run into any questions, you can use Piazza
and office hours for additional help!

11



Part 3: Using Saros for Peer Programming
This guide will help you get started with Saros and using it to peer program with your CSE 332 project partner.

Installing Saros
(a) Download Saros from Sourceforge.

(b) Uncompress the downloaded folder, and then use your file viewer to find your Eclipse app. If you see an
Eclipse folder, enter it, otherwise if you only see the Eclipse application icon, right click on the Eclipse icon,
and select “open package contents” or the equivalent. Inside of the resulting folder, find the “dropins”
folder and drag your uncompressed folder into this folder.

(c) Restart Eclipse. If you don’t see a new tab for Saros appear when Eclipse starts up, type in “Saros” in
the Quick Access bar. If no results appear, this likely means you need to download the Graphical Editing
Framework. To do this, download the most recent version on the linked page, uncompress the downloaded
folder, and drag this folder in the “dropins” folder as you did with the Saros download, and restart Eclipse.

Using Saros
(a) After restarting Eclipse, open Saros (either auto-populated in an Eclipse tab or by typing “Saros” in the

Quick Access bar). Once you have the Saros tab open, you will need to create an account to use Saros.
On the Saros option in the top menu bar, select “Create Account”:

You should see the following window appear. Fill in the information to create your account, entering
“saros-con.imp.fu-berlin.de” as the server name and providing your student username and a password
of your choice. [Note: The screenshots that follow incorrectly refer to xmpp.countablethoughts.com,
use saros-con.imp.fu-berlin.de instead.]Make sure to select the “Use new account immediately” option to
prevent having to log in again, and click “Finish”.

12

https://sourceforge.net/projects/dpp/files/latest/download?source=files
http://www.eclipse.org/gef/downloads/index.php
http://www.eclipse.org/gef/downloads/index.php


13



(b) Now you will need to add your project partner as a Saros contact to enable real-time collaboration. On
the same Saros menu bar from Step a, select “Add contact”. In the “Add Contact” window that appears
(see below), add your project partner’s username to the left of the @-symbol in the “JID” text area.

Once you select “Finish”, they should receive a contact request on their Eclipse app, which they should
accept (only one of you needs to send a contact request for you both to be contacts).

(c) Once you have added your partner as a contact, you will want to add a project to Saros so that you can
peer-code with your partner. To do this, first open up the Saros menu on the top menu bar and select
“Share Project. . . ”.

14



All projects in your current Eclipse workspace will appear, and you should select the one that corresponds
to your project repo.

(d) Once you’ve shared your project, you will still need to add contacts to that project. To do so, right-click
on your partner’s name in the Saros window and click “Add to Saros Session” (see below). Your partner
will have to accept your invitation on their eclipse screen. If your partner is already in a Saros Session,
you will receive an error message.

15



(e) The Add Project menu will pop up once both partners accept their invitations. On that screen, simply
give a name to the project on which you are collaborating. Once both partners select “Finish” in that
menu and shared files are transferred, collaboration can begin.

(f) Your partner and their cursor on the project will be identified as the color next to their name. If you wish
to change the color used to indicate which partner is writing what, simply right-click on the color icon
under your name in the Saros menu and click on “change color” (see below):

(g) Start peer programming! When you are finished with your programming session, you can exit the session
with the “Stop session” icon (the red square on the Saros tab). The student who shared their project
space on the session should be the one committing and pushing the project changes to your group’s repo,
and the other partner should then pull the updated version to their local repository.

If you would like to learn more about the different features of Saros, you can find helpful “Getting Started”
information here!

16

http://www.saros-project.org/GettingStarted

