\qquad

CSE332, Spring 2012, Midterm Examination
 April 27, 2012

Please do not turn the page until the bell rings.

Rules:

- The exam is closed-book, closed-note.
- Please stop promptly at 3:20.
- You can rip apart the pages, but please staple them back together before you leave.
- There are $\mathbf{1 0 0}$ points total, distributed unevenly among $\mathbf{9}$ questions (many with multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit. But clearly circle your final answer.
- The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad

1. ($\mathbf{1 2}$ points) Give a big- O bound on the worst-case running time of each code fragment below in terms of n.

- Assume integer arithmetic (division rounds down).
- Each bound should be as "tight" and "simple" as possible.
(a) $\operatorname{for}(\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) \{
for (j = 0; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}+\mathrm{+}$) \{
for (k = 0; k < i + j-4; k++) \{ sum++;
\}

\}

\}
(b) $\mathrm{x}=\mathrm{n}$;
while ($\mathrm{x}>0$) \{
sum++;
x = x / 2;
\}
(c) $\operatorname{sum}=0$;
$i=0$;
$\mathrm{j}=7 \mathrm{n}$;
while(i < j) \{ sum++; i++; j--;
\}
(d) $\mathrm{x}=\mathrm{n}$;
while ($x>0$) \{ $\mathrm{y}=\mathrm{n}$; while (y > 0) \{
sum++;
y = y / 2;
\}
$\mathrm{x}=\mathrm{x} / 2$;
\}
(e) tree = new AVLTree();
for (i = 0; i < n; i++) \{
tree.insert(foo()); // foo produces some element in $0(1)$ time \}
sum $=0$;
for (i = 0; i < n; i++) \{
sum += tree.findMin();
tree.insert(foo()); // foo produces some element in $0(1)$ time
\}

Name: \qquad
2. ($\mathbf{1 0}$ points) Assume there are two functions over n called $f_{1}(n)$ and $f_{2}(n)$ that have positive results for all n.
Let $g(n)$ be defined as $g(n)=\max \left(f_{1}(n), f_{2}(n)\right)$.
Let $h(n)$ be defined as $h(n)=f_{1}(n)+f_{2}(n)$.
(a) Using the formal definition of big- O, show that $f_{1}(n)$ is in $O(g(n))$.
(b) Using the formal definition of big- O, show that $g(n)$ is in $O(h(n))$.
(c) Using the formal definition of big- O, show that $h(n)$ is in $O(g(n))$.

None of your answers should require more than 1-3 sentences.

Name: \qquad
3. ($\mathbf{9}$ points) Recall:

- The structure property for a binary min-heap is that it is a complete binary tree.
- A complete binary tree may or may not be a perfect binary tree.
(a) What is the definition of a complete binary tree? In addition to an English sentence or two, draw a picture to demonstrate.
(b) What is the definition of a perfect binary tree? In addition to an English sentence or two, draw a picture to demonstrate.
(c) Complete this alternate definition of a complete binary tree. For each blank, put either a height (e.g., $h, h-1$, etc.) or a kind of tree (e.g., complete or perfect).

Any binary tree of height 0 is a perfect binary tree and therefore also a complete binary tree.
Any complete tree of height $h>0$ is either:

- a root whose left child is a \qquad binary tree of height \qquad and whose right child is a \qquad binary tree of height \qquad ,
- or a root whose left child is a \qquad binary tree of height \qquad and whose right child is a \qquad binary tree of height \qquad
(The two bullets above are the same, but they will not be the same after you correctly fill in the blanks.)

Name: \qquad
4. ($\mathbf{1 0}$ points) We studied a particular way to use an array to represent a binary tree. When we represented a binary min-heap with n elements this way, we did not waste much space because an array of size $n+1$ was enough. For a general binary tree, much more space may be wasted (unused).
(a) Using the array representation we studied, what is the largest array that might be necessary to hold a binary tree with 5 elements?
(b) Give an example binary search tree that leads to the largest-array case for your answer to part (a). (Draw the tree, not its array representation.)
(c) Using the array representation we studied, what is the largest array that might be necessary to hold a tree with n elements? Answer precisely in terms of n.

Name: \qquad
5. ($\mathbf{1 6}$ points)
(a) There are six possible AVL trees containing elements with keys 2, 4, 6, 8, and 10. Draw all six trees. (Each tree will have all five keys in it.)
(b) Choose one of your six trees from part (a) such that inserting an element with key 7 into it requires no rotations. Clearly indicate what tree you start with and show the result of the insertion.
(c) Choose one of your six trees from part (a) such that inserting an element with key 7 into it requires one single rotation. Clearly indicate what tree you start with and show the result of the insertion.
(d) Choose one of your six trees from part (a) such that inserting an element with key 7 into it requires one double rotation. Clearly indicate what tree you start with and show the result of the insertion.

Name: \qquad
6. ($\mathbf{8}$ points) On a homework, we investigated a clever data structure for a double-ended priority queue, with $O(\log n)$ operations insert, deleteMin, deleteMax and $O(1)$ operations findMin and findMax. A colleague of yours suggests there is a simpler data structure with the same asymptotic behavior:

- Keep a binary min-heap and perform the operations on it as usual.
- Also keep a separate field that holds the index with the max element so that findMax can still be $O(1)$ and you know where the max element is to delete it. When inserting an element, if it is greater than the max element, update the separate field appropriately.

This approach does not work. Which operation will require an $O(n)$ algorithm and why?

Name: \qquad
7. ($\mathbf{1 6}$ points)
(a) What is the worst-case big- O running-time for the f ind operation in a B tree with n elements, at most M children at an internal node, and at most L data items at a leaf?
(b) Suppose the find algorithm uses linear search instead of binary search whenever possible. Now what is the worst-case big- O running-time?
(c) True or false and explain your answer briefly: If every leaf of a B tree is not full, then an insert operation definitely will not require a split operation.
(d) True or false and explain your answer briefly: If every leaf of a B tree is full, then an insert operation definitely will require a split operation.
(e) True or false and explain your answer briefly: If the root of a B tree is not full, then an insert operation definitely will not increase the height of the tree.
(f) True or false and explain your answer briefly: If the root of a B tree is full, then an insert operation definitely will increase the height of the tree.

Name: \qquad
8. ($\mathbf{6}$ points) Consider this simple type for representing complex numbers:

```
class ComplexNumber {
    double realPart;
    double imaginaryPart;
    ...
}
```

If we define arithmetic operations over these numbers, we could use them instead of double since they are a generalization (we can think of every real number as a complex number).

If we want to put complex numbers in a hashtable, we need a hash function to convert them to integers. Give a reason why making the hash function for c be (int) (c.realPart * c.imaginaryPart) is likely to be a very poor choice.

Name: \qquad
9. ($\mathbf{1 3}$ points)

Consider inserting data with integer keys $20,18,11,47,36,19$ in that order into a hash table of size 9 where the hashing function is h (key) \% 9 .

- Show a chaining hash table after doing the insertions:

- Show an open addressing with linear probing hash table after doing the insertions.

- Show an open addressing with quadratic probing hash table after doing the insertions.

