
Name: _____________________________________

Email address (UWNetID): _____________________________________

CSE 332 Winter 2019 Final Exam
(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully before answering. We may give

partial credit based on the work you write down, so show your work! Use only the data

structures and algorithms we have discussed in class so far. Writing after time has been called

will result in a loss of points on your exam.

Note: For questions where you are drawing pictures, please circle your final answer.

You have 1 hour and 50 minutes, work quickly and good luck!

Total: Time: 1 hr and 50 minutes.

Question Max Points Topic

1 10 Hashing

2 10 Graphs

3 8 More Graphs

4 10 || Prefix

5 14 ForkJoin

6 12 Concurrency

7 16 Sorting

8 10 P/NP

Total 90

2 of 12

1) [10 points total] Hash Tables
For a) and b) below, insert the following elements in this order: 7, 9, 48, 8, 37, 57. For each

table, TableSize = 10, and you should use the primary hash function h(k) = k%10. If an item

cannot be inserted into the table, please indicate this and continue inserting the remaining values.

a) [1 pt] Quadratic probing hash table

0

1

2

3

4

5

6

7

8

9

b) [1 pt] Separate chaining hash table – Use

a linked list for each bucket. Order elements

within buckets in any way you wish.

0

1

2

3

4

5

6

7

8

9

c) [2 pts] In a sentence or two, describe double hashing.

d) [4 pts] List 2 cons of quadratic probing and describe how one of those is fixed by using

double hashing.

e) [2 pts] Give a tight big-O bound for the worst case runtime of an Insert in a separate chaining

hash table containing N elements where each bucket points to its own binary search tree? For

any credit explain your answer briefly.

 3 of 12

2) [10 points total] Graphs!

a) [1 pts] Draw a directed graph containing 4 vertices that has exactly one topological sort.

b) [3 pts] You are given Dijkstra’s algorithm implemented using a priority queue as described in

lecture. The priority queue implementation you must use has the following worst case running

times: insert: O(N), deletemin: O(N), decreasekey: O(N2), increasekey: O(N2), buildheap:

O(NlogN). Given that you must use this priority queue, what is the worst case running time of

Dijkstra’s? Give your answer as a tight Big-O bound in terms of V and E. Explain how you got

your answer briefly.

c) [2 pts] What is the minimum number of edges in a complete directed graph with 4 vertices? Do

NOT include self-loops in your count. Draw a picture of your graph.

d) [2 pt] We covered two data structures to represent graphs. Give the name of the one with a faster

worst case running time for the operation of deleting a particular edge and its running time.

Name of structure: ____________________________________

Worst Case tight Big-O bound on Running Time: _________________________

e) [1 pt] Give one way in which Breadth First Search is better than Depth First Search.

f) [1 pt] Give one way in which Depth First Search is better than Breadth First Search.

Minimum

Number of

Edges:

4 of 12

3) [8 points total] More Graphs!

a) [6 pts] Find a minimum spanning tree with Prim’s algorithm using vertex A as the starting

node. **Mark, circle, or highlight edges in the graph that are in your minimum spanning tree. **

Show your steps in the table by crossing through values that are replaced by a new value. Break

ties by choosing the letter that comes first alphabetically; ex. if Y and Z were tied, you should

pick Y. Note that b) asks you to recall what order vertices were declared known.

Vertex Known (F/T) Cost Prev

A

B

C

D

E

F

G

b) [1 pt] In what order would Prim’s algorithm mark each node as known?

c) [1 pt] Will Prim’s starting at vertex A find a correct minimum spanning tree if the weight of

edge (E, G) is set to be -8? (circle one)

YES NO

A B

D

C

F

E

G

1

5
1 6

2

2

4

6
4

2
1

5

Did you highlight

your original

MST in the

graph above?

 5 of 12

4) [10 points] Parallel “Suffix Count Evens” (Like Prefix, but from the Right instead):

a) Given the following array as input, calculate the “suffix count of evens” using an algorithm

similar to the parallel prefix algorithm discussed in lecture. In other words, output[i]

should contain the count of even numbers from input[i] to input[input.length - 1]

inclusive. The first pass of the algorithm is similar to the first pass of the parallel prefix code

you have seen before. Fill in the values for evens and var in the tree below. The output

array has been filled in for you. Do not use a sequential cutoff.

Index 0 1 2 3 4 5 6 7
input 0 -6 7 25 14 14 4 5
output 5 4 3 3 3 2 1 0

b) Give formulas for the following values where p is a reference to a non-leaf tree node and

leaves[i] refers to the leaf node in the tree visible just above the corresponding location

in the input and output arrays in the picture above.

p.evens =

p.left.var =

p.right.var =

output[i] =

c) Describe how you assigned a value to leaves[i].evens .

lo:0

hi:8

evens:

var:

lo:0

hi:4

evens:

var:

lo:4

hi:8

evens:

var:

lo:6

hi:8

evens:

var:

lo:4

hi:6

evens:

var:

lo:2

hi:4

evens:

var:

lo:0

hi:2

evens:

var:

l:0

h:1

evens:

var:

l:1

h:2

evens:

var:

l:2

h:3

evens:

var:

l:3

h:4

evens:

var:

l:4

h:5

evens:

var:

l:5

h:6

evens:

var:

l:6

h:7

evens:

var:

l:7

h:8

evens:

var:

6 of 12

5) [14 points] In Java using the ForkJoin Framework, write code to solve the following problem:

• Input: An array of ints containing values in the range 0-15 (inclusive). There can be

duplicates and assume that the length of the array is an odd number.

• Output: Return the median value found in the array.

If the input array is {0}, the program would return 0.

If the input array is {15, 3, 6}, the program would return 6.

If the input array is {13, 12, 0, 5, 3, 12, 15, 2, 7}, the program would return 7.

 Do not employ a sequential cut-off: the base case should process one element.

(You can assume the input array will contain at least one int.)

 Give a class definition, FindMedianTask, along with any other code or classes needed.

 Fill in the function findMedian below.

*You may NOT use any global data structures or synchronization primitives (locks).

*Make sure your code has O(log n) span and O(n) work.

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.RecursiveAction;

class Main{

public static final ForkJoinPool fjPool = new ForkJoinPool();

// Returns the median value in input array with values 0-15.

// Assumes an odd number of values in input array.

public static int findMedian (int[] input) {

 // Your code here:

}

}

Please fill in the function above and write your class(es) on the next page.

 7 of 12

5) (Continued) Write your class(es) on this page.

8 of 12

6) [12 points total] Concurrency: The PhoneMonitor class tries to help manage how much

you use your cell phone each day. Multiple threads can access the same PhoneMonitor object.

Remember that synchronized gives you reentrancy.
 1

public class PhoneMonitor { 2

 private int numMinutes = 0; 3

 private int numAccesses = 0; 4

 private int maxMinutes = 200; 5

 private int maxAccesses = 10; 6

 private boolean phoneOn = true; 7

 private Object accessesLock = new Object(); 8

 private Object minutesLock = new Object(); 9
 10

 public void accessPhone(int minutes) { 11
 12

 if (phoneOn) { 13
 14

 synchronized (accessesLock) { 15
 16

 synchronized (minutesLock) { 17
 18

 numAccesses++; 19

 numMinutes += minutes; 20

 checkLimits(); 21

 } 22

 } 23

 } 24

 } 25
 26

 private void checkLimits() { 27
 28

 synchronized (minutesLock) { 29
 30

 synchronized (accessesLock) { 31
 32

 if ((numAccesses >= maxAccesses) || 33

 (numMinutes >= maxMinutes)) { 34

 phoneOn = false; 35

 } 36

 } 37

 } 38

 } 39

} 40

a) [4 pts] Does the PhoneMonitor class as shown above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

Justify your answer. Refer to line numbers in your explanation. Be specific!

 9 of 12

6) (Continued)

b) [4 pts] Suppose we made the checkLimits method public, and changed nothing else in the

code. Does this modified PhoneMonitor class have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW

problems, give an example of when those problems could occur. Refer to line numbers in your

explanation. Be specific!

c) [4 pts] Assuming the checkLimits method is now public, add these two methods to the

class:

public int increaseMaxMinutes(int minutes) {

 maxMinutes += minutes;

 return maxMinutes;

}

public int increaseMaxAccesses(int accesses) {

 maxAccesses += accesses;

 return maxAccesses;

}

Now modify the code above and on the previous page to allow the most concurrent access and

to avoid all of the potential concurrency problems listed above. Use only synchronized

statements or methods. Create other objects or fields as needed. For full credit you must allow

the most concurrent access possible without introducing any of the synchronization

problems listed above.

10 of 12

7) [16 points total] Sorting

a) [3 pts] Give the recurrence for Quicksort (parallel sort & sequential partition) – best case

span. (Note: We are NOT asking for the closed form.) For any credit, explain all parts of

your answer briefly.

b) [3 pts] Give the recurrence for SEQUENTIAL Mergesort – worst case running time. (Note:

We are NOT asking for the closed form.) For any credit, explain all parts of your answer

briefly.

c) [2 pts] Give a tight Big-O bound for the running time of selection sort if it happened to be

given an array that was already sorted from smallest to largest. For any credit explain your

answer.

Running time:

 11 of 12

7) (Continued)

d) [2 pts] Give a tight Big-O bound for the running time of mergesort if it happened to be

given an array that was already sorted from smallest to largest. For any credit explain your

answer.

e) [3 pts] Is bucket sort in-place? YES NO

Explain your answer. Be specific – refer to the bucket sort algorithm in particular, do not

just give a definition of in-place.

f) [3 pts] Is radix sort stable? YES NO

Explain your answer. Be specific – refer to the radix sort algorithm in particular, do not

just give a definition of stable.

Running time:

12 of 12

8) [10 points total] P, NP, NP-Complete

a) [1 pt] “NP” stands for __

b) [2 pts] What does it mean for a problem to be in NP?

c) [2 pts] What should you do if you suspect (but are not sure) a problem you are given is NP-

complete, and you need an answer to the problem in a reasonable amount of time?

d) [5 pts] For the following problems, circle ALL the sets each problem belongs to:

Finding a cycle that visits

each vertex in a graph

exactly once NP-complete P NP None of these

Determining if an array

is sorted. NP-complete P NP None of these

Finding the shortest path from

one vertex to all other vertices in

the graph. The graph is directed

and weighted. NP-complete P NP None of these

Finding a path in a weighted graph that

begins and ends at the same vertex, and

visits every vertex exactly once. The

path must have a total cost < k.

NP-complete P NP None of these

Determining if a chess move

is the best move on an N x N

board NP-complete P NP None of these

