
Name: _____Sample Solution__________________

Email address (UWNetID): _____________________________________

CSE 332 Winter 2019 Final Exam
(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully before answering. We may give

partial credit based on the work you write down, so show your work! Use only the data

structures and algorithms we have discussed in class so far. Writing after time has been called

will result in a loss of points on your exam.

Note: For questions where you are drawing pictures, please circle your final answer.

You have 1 hour and 50 minutes, work quickly and good luck!

Total: Time: 1 hr and 50 minutes.

Question Max Points Topic

1 10 Hashing

2 10 Graphs

3 8 More Graphs

4 10 || Prefix

5 14 ForkJoin

6 12 Concurrency

7 16 Sorting

8 10 P/NP

Total 90

2 of 12

1) [10 points total] Hash Tables
For a) and b) below, insert the following elements in this order: 7, 9, 48, 8, 37, 57. For each

table, TableSize = 10, and you should use the primary hash function h(k) = k%10. If an item

cannot be inserted into the table, please indicate this and continue inserting the remaining values.

a) [1 pt] Quadratic probing hash table

0

1

2

3

4

5

6

7

8

9

b) [1 pt] Separate chaining hash table – Use

a linked list for each bucket. Order elements

within buckets in any way you wish.

0

1

2

3

4

5

6

7

8

9

c) [2 pts] In a sentence or two, describe double hashing.

The first hash function determines the original location where we should try to place the

item. If there is a collision, then the second hash function is used to determine the probing

step distance as 1*h2(key), 2*h2(key), 3*h2(key) etc. away from the original location.

d) [4 pts] List 2 cons of quadratic probing and describe how one of those is fixed by using

double hashing.

In quadratic probing, 1) if the table is more than half full (load factor = 0.5) then you are

not guaranteed to be able to find a location to place the item, 2) suffers from secondary

clustering (items that initially hash to the same location resolve the collision identically).

Assuming a good second hash function is used, double hashing does not suffer from 1).

Assuming a good second hash function is used, double hashing avoids secondary clustering

because items that initially hash to the same location resolve the collision differently, which

decreases the likelihood that two elements will hash to the same index after initial collision.

e) [2 pts] Give a tight big-O bound for the worst case runtime of an Insert in a separate chaining

hash table containing N elements where each bucket points to its own binary search tree? For

any credit explain your answer briefly.

O(N) – A bad hash function causes all N elements to hash to the same bucket, and then

those keys are inserted in either ascending or descending order – leading to the worst case

running time for each insert into that one binary search tree.

 3 of 12

2) [10 points total] Graphs!

a) [1 pts] Draw a directed graph containing 4 vertices that has exactly one topological sort.

b) [3 pts] You are given Dijkstra’s algorithm implemented using a priority queue as described in

lecture. The priority queue implementation you must use has the following worst case running

times: insert: O(N), deletemin: O(N), decreasekey: O(N2), increasekey: O(N2), buildheap:

O(NlogN). Given that you must use this priority queue, what is the worst case running time of

Dijkstra’s? Give your answer as a tight Big-O bound in terms of V and E. Explain how you got

your answer briefly.

for each node: x.cost=infinity, x.known=false // O(V)

start.cost = 0 // O(1)

build-heap with all nodes // O(VlogV) buildheap

while (heap is not empty) { // V times

 b = deleteMin() // O(V) deletemin

 b.known = true // O(1)

 for each edge (b,a) in G // d times, E times total

 if(!a.known) if(b.cost + weight((b,a)) < a.cost){ // O(1)

 decreaseKey(a,“new cost – old cost”) // O(V2) decreasekey

 a.path = b // O(1)

 }

} O(V + VlogV + V*(V + d * V2)) -> O(VlogV + V2 + E* V2) -> O(E* V2)

c) [2 pts] What is the minimum number of edges in a complete directed graph with 4 vertices? Do

NOT include self-loops in your count. Draw a picture of your graph.

d) [2 pt] We covered two data structures to represent graphs. Give the name of the one with a faster

worst case running time for the operation of deleting a particular edge and its running time.

Name of structure: _____Adjacency Matrix_____________________________

Worst Case tight Big-O bound on Running Time: _____O(1) ____________________

e) [1 pt] Give one way in which Breadth First Search is better than Depth First Search.

Breadth First Search will find the shortest (unweighted) path to a vertex, Depth First

Search does not necessarily find that.

f) [1 pt] Give one way in which Depth First Search is better than Breadth First Search.

Depth First Search often uses less memory than Breadth First Search.

Minimum

Number of

Edges:

4 of 12

3) [8 points total] More Graphs!

a) [6 pts] Find a minimum spanning tree with Prim’s algorithm using vertex A as the starting

node. **Mark, circle, or highlight edges in the graph that are in your minimum spanning tree. **

Show your steps in the table by crossing through values that are replaced by a new value. Break

ties by choosing the letter that comes first alphabetically; ex. if Y and Z were tied, you should

pick Y. Note that b) asks you to recall what order vertices were declared known.

Vertex Known (F/T) Cost Prev

A

B

C

D

E

F

G

b) [1 pt] In what order would Prim’s algorithm mark each node as known?

A, B, D, C, E, G, F

c) [1 pt] Will Prim’s starting at vertex A find a correct minimum spanning tree if the weight of

edge (E, G) is set to be -8? (circle one)

YES NO

A
B

D

C

F

E

G

1

5
1 6

2

2

4

6
4

2
1

5

Did you highlight

your original

MST in the

graph above?

 5 of 12

4) [10 points] Parallel “Suffix Count Evens” (Like Prefix, but from the Right instead):

a) Given the following array as input, calculate the “suffix count of evens” using an algorithm

similar to the parallel prefix algorithm discussed in lecture. In other words, output[i]

should contain the count of even numbers from input[i] to input[input.length - 1]

inclusive. The first pass of the algorithm is similar to the first pass of the parallel prefix code

you have seen before. Fill in the values for evens and var in the tree below. The output

array has been filled in for you. Do not use a sequential cutoff.

Index 0 1 2 3 4 5 6 7
input 0 -6 7 25 14 14 4 5
output 5 4 3 3 3 2 1 0

b) Give formulas for the following values where p is a reference to a non-leaf tree node and

leaves[i] refers to the leaf node in the tree visible just above the corresponding location

in the input and output arrays in the picture above.

p.evens = p.left.evens + p.right.evens

p.left.var = p.right.evens + p.var

p.right. var = p.var

output[i] = leaves[i].evens + leaves[i].var

c) Describe how you assigned a value to leaves[i].evens .

leaves[i].evens = 1 if input[i] % 2 == 0 else 0

lo:0

hi:8

evens: 5

var: 0

lo:0

hi:4

evens: 2

var: 3

lo:4

hi:8

evens: 3

var: 0

lo:6

hi:8

evens: 1

var: 0

lo:4

hi:6

evens: 2

var: 1

lo:2

hi:4

evens: 0

var: 3

lo:0

hi:2

evens: 2

var: 3

l:0

h:1

evens:1

var:4

l:1

h:2

evens:1

var:3

l:2

h:3

evens:0

var:3

l:3

h:4

evens:0

var:3

l:4

h:5

evens:1

var:2

l:5

h:6

evens:1

var:1

l:6

h:7

evens:1

var:0

l:7

h:8

evens:0

var:0

6 of 12

5) [14 points] In Java using the ForkJoin Framework, write code to solve the following problem:

• Input: An array of ints containing values in the range 0-15 (inclusive). There can be

duplicates and assume that the length of the array is an odd number.

• Output: Return the median value found in the array.

If the input array is {0}, the program would return 0.

If the input array is {15, 3, 6}, the program would return 6.

If the input array is {13, 12, 0, 5, 3, 12, 15, 2, 7}, the program would return 7.

 Do not employ a sequential cut-off: the base case should process one element.

(You can assume the input array will contain at least one int.)

 Give a class definition, FindMedianTask, along with any other code or classes needed.

 Fill in the function findMedian below.

*You may NOT use any global data structures or synchronization primitives (locks).

*Make sure your code has O(log n) span and O(n) work.

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.RecursiveAction;

class Main{

public static final ForkJoinPool fjPool = new ForkJoinPool();

// Returns the median value in input array with values 0-15.

// Assumes an odd number of values in input array.

public static int findMedian (int[] input) {

 // Your code here:

 int[] res = fj.invoke(new FindMedianTask(0, input.length, input));

 int mid = input.length/2 + 1;

 int count = 0;

 for(int i = 0; i < 16; i++) {

 count += res[i];

 if (count >= mid) {

 return i;

 }

 }

 return -1; // This should never happen

}

}

Please fill in the function above and write your class(es) on the next page.

 7 of 12

5) (Continued) Write your class(es) on this page.

public static class FindMedianTask extends RecursiveTask<int[]> {

 int lo, hi;

 int[] input;

 public FindMedianTask(int lo, int hi, int[] input) {

 this.lo = lo;

 this.hi = hi;

 this.input = input;

 }

 public int[] compute() {

 if (hi - lo <= 1) {

 int[] counts = new int[16];

 counts[input[lo]] = 1;

 return counts;

 }

 int mid = lo + (hi - lo)/2;

 FindMedianTask left = new FindMedianTask(lo, mid, input);

 FindMedianTask right = new FindMedianTask(mid, hi, input);

 right.fork();

 int[] leftResult = left.compute();

 int[] rightResult = right.join();

 for (int i = 0; i < 16; i++) {

 leftResult[i] += rightResult[i];

 }

 return leftResult;

 }

 }

}

8 of 12

6) [12 points total] Concurrency: The PhoneMonitor class tries to help manage how

much you use your cell phone each day. Multiple threads can access the same PhoneMonitor

object. Remember that synchronized gives you reentrancy.
 1

public class PhoneMonitor { 2

 private int numMinutes = 0; 3

 private int numAccesses = 0; 4

 private int maxMinutes = 200; 5

 private int maxAccesses = 10; 6

 private boolean phoneOn = true; 7

 private Object accessesLock = new Object(); 8

 private Object minutesLock = new Object(); 9
 10

 public void accessPhone(int minutes) { 11
 12

 if (phoneOn) { // for part c REMOVE this line 13

 14

 synchronized (accessesLock) { 15

 16

 synchronized (minutesLock) { 17
 18

 if (phoneOn) { // for part c ADD this line 19

 20

 numAccesses++; 21

 numMinutes += minutes; 22

 checkLimits(); 23

 } 24

 } 25

 } 26

 } 27
 28

 private void checkLimits() { 29
 30

 synchronized (minutesLock) { // for part c swap line 31 & 33 31

 32

 synchronized (accessesLock) { 33
 34

 if ((numAccesses >= maxAccesses) || 35

 (numMinutes >= maxMinutes)) { 36

 phoneOn = false; 37

 } 38

 } 39

 } 40

 } 41

} 42

a) [4 pts] Does the PhoneMonitor class as shown above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

Justify your answer. Refer to line numbers in your explanation. Be specific!

There is a data race on phoneOn. Thread 1 (not needing to hold any locks) could be at line

13 reading phoneOn, while Thread 2 is at line 35 (holding both of the locks) writing

phoneOn. A data race is by definition a type of race condition.

 9 of 12

6) (Continued)

b) [4 pts] Suppose we made the checkLimits method public, and changed nothing else in the

code. Does this modified PhoneMonitor class have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW

problems, give an example of when those problems could occur. Refer to line numbers in your

explanation. Be specific!

The same data race still exists, and thus so does the race condition.

By making checkLimits method public, it is possible for Thread 1 to call accessPhone

and be at line 17 holding the accessesLock lock and trying to get the minutesLock lock.

Thread 2 could now call checkLimits and be at line 31, holding the minutesLock lock

and trying to get the accessesLock lock

c) [4 pts] Assuming the checkLimits method is now public, add these two methods to the

class:

public int increaseMaxMinutes(int minutes) {

 synchronized(minutesLock) { // for part c add this

 maxMinutes += minutes;

 return maxMinutes;

 }

}

public int increaseMaxAccesses(int accesses) {

 synchronized(accessesLock) { // for part c add this

 maxAccesses += accesses;

 return maxAccesses;

 }

}

Now modify the code above and on the previous page to allow the most concurrent access and

to avoid all of the potential concurrency problems listed above. Use only synchronized

statements or methods. Create other objects or fields as needed. For full credit you must allow

the most concurrent access possible without introducing any of the synchronization

problems listed above.

10 of 12

7) [16 points total] Sorting

a) [3 pts] Give the recurrence for Quicksort (parallel sort & sequential partition) – best case

span. (Note: We are NOT asking for the closed form.) For any credit, explain all parts of

your answer briefly.

b) [3 pts] Give the recurrence for SEQUENTIAL Mergesort – worst case running time. (Note:

We are NOT asking for the closed form.) For any credit, explain all parts of your answer

briefly.

c) [2 pts] Give a tight Big-O bound for the running time of selection sort if it happened to be

given an array that was already sorted from smallest to largest. For any credit explain your

answer.

Selection sort will have N iterations of its outer loop. For iteration k, its

inner loop examines all the remaining not-yet-sorted elements and finds the

smallest one, putting it in position k. For sorted data, even though for

iteration k, the kth-smallest element is already in the correct position, the

sort does not know this. Thus it must still must examine all N-k not-yet-sorted

elements even though it does not have to move anything. The number of elements

examined is still: N, N-1, N-2, N-3, …. 1 or (N*(N+1))/2 or O(N2) whether the data is pre-

sorted or not.

Running time:

 O(N2)

 11 of 12

7) (Continued)

d) [2 pts] Give a tight Big-O bound for the running time of mergesort if it happened to be

given an array that was already sorted from smallest to largest. For any credit explain your

answer.

Sequential Mergesort as described in lecture:

1) Divides the given array in half with math (size/2) in constant time.

2) Makes 2 recursive calls to Mergesort on those two equal sized pieces.

3) Merges those two sorted pieces together and copies them into a new array.

Steps 1 and 2 are not affected by the elements being sorted already. Step 3 is

the only place it could potentially make a difference. However even if the two

pieces could just be concatenated together without any copying, the merge step would still

examine the entire first piece (of size N/2) to determine it was sorted. Thus our recurrence

would still be T(N) = 2T(N/2) + O(N) -> O(NlogN)

e) [3 pts] Is bucket sort in-place? YES NO

Explain your answer. Be specific – refer to the bucket sort algorithm in particular, do not

just give a definition of in-place.

Bucket sort uses a set of “buckets” of size k as an auxiliary data structure. Bucket sort

reads through the input and either increments a count of each element or adds the item to a

linked list (see Movie Ratings example in slides) attached to each bucket. In the final step it

reads through the set of k buckets in order, outputting the N elements in sorted order.

Since bucket sort uses a non-trivial auxiliary data structure we consider it NOT to be in-

place.

f) [3 pts] Is radix sort stable? YES NO

Explain your answer. Be specific – refer to the radix sort algorithm in particular, do not

just give a definition of stable.

In the case of ties, a stable sort preserves the original ordering of values.

Radix sort does multiple passes of bucket sort. The first pass is done on the least-significant

digit, sorting by a digit per pass until it does the last pass on the most-significant digit. In

order to preserve the results of the previous pass, each pass MUST be stable.

E.g. if the first pass sorted one the ones place, the second pass must preserve that ordering

while also sorting on the 10s place, thus after pass k, the data has been sorted if you only

look at the least-significant k digits. Each pass can be made stable by having each bucket

maintain the original order of the values put into it (e.g. each bucket is a FIFO queue).

Running time:

 O(NlogN)

12 of 12

8) [10 points total] P, NP, NP-Complete

a) [1 pt] “NP” stands for ____Non-deterministic Polynomial____________________

b) [2 pts] What does it mean for a problem to be in NP?

Given a candidate solution, we can verify whether the solution is correct in polynomial

time.

c) [2 pts] What should you do if you suspect (but are not sure) a problem you are given is NP-

complete, and you need an answer to the problem in a reasonable amount of time?

First try to establish that it is NP-complete. Part of this includes doing a reduction

from a known NP-complete problem to your problem in polynomial time. (Another

part includes showing that your problem is in NP, although that alone is not sufficient.)

AFTER you have shown that your problem is NP-complete, you can quit trying to find

a polynomial time algorithm and instead use any of the techniques we use for NP-

complete problems (e.g. approximation algorithms, solutions for a restricted version of

the problem, heuristics).

d) [5 pts] For the following problems, circle ALL the sets each problem belongs to:

Finding a cycle that visits

each vertex in a graph

exactly once NP-complete P NP None of these

Determining if an array

is sorted. NP-complete P NP None of these

Finding the shortest path from

one vertex to all other vertices in

the graph. The graph is directed

and weighted. NP-complete P NP None of these

Finding a path in a weighted graph that

begins and ends at the same vertex, and

visits every vertex exactly once. The

path must have a total cost < k.

NP-complete P NP None of these

Determining if a chess move

is the best move on an N x N

board NP-complete P NP None of these

