CSE 332: Data Structures and Parallelism

Mathematical Formulas

Gauss' Summation

$\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$.

Infinite Geometric Series

$\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$, where $-1<x<1$.

Finite Geometric Series

$\sum_{i=0}^{n} x^{i}=\left(\frac{1}{1-x}\right)-\left(\frac{x^{n+1}}{1-x}\right)=\frac{1-x^{n+1}}{1-x}$

Logs

$x^{\log _{x} n}=n$
$a^{\log _{b} c}=c^{\log _{b} a}$
$l o g_{b} a=\frac{\log _{d} a}{\log _{d} b}$
Summations
$\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
$\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

