Some Useful Facts

When we're using the tree method to solve a recurrence, we usually use the following steps:

0 . Draw a few levels of the tree.

1. Let the root node be at level 0 . Give a formula for the size of the input at level i.
2. What is the number of nodes at level i ?
3. What is the work done at the $i^{\text {th }}$ recursive level?
4. What is the last level of the tree?
5. What is the work done at the base case?
6. Write an expression for the total work done.
7. Simplify until you have a "closed form" (i.e. no summations or recursion).

Geometric series identities:

$$
\sum_{i=0}^{k} c^{i}=\frac{c^{k+1}-1}{c-1} \quad \sum_{i=0}^{\infty} c^{i}=\frac{1}{1-c} \text { if }|c|<1
$$

Common Summations:

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Log identities:

$$
a^{\log _{b}(c)}=c^{\log _{b}(a)} \quad \log _{b}(a)=\frac{\log _{d}(a)}{\log _{d}(b)}
$$

Master Theorem:

Given a recurrence of the following form:

$$
T(n)= \begin{cases}d & \text { if } n \leq \text { some constant } \\ a T(n / b)+n^{c} & \text { otherwise }\end{cases}
$$

with a, b, c are constants.
If $\log _{b}(a)<c$ then $T(n)$ is $\Theta\left(n^{c}\right)$
If $\log _{b}(a)=c$ then $T(n)$ is $\Theta\left(n^{c} \log n\right)$
If $\log _{b}(a)>c$ then $T(n)$ is $\Theta\left(n^{\log _{b}(a)}\right)$

