Some Useful Facts

When we're using the tree method to solve a recurrence, we usually use the following steps:

- 0. Draw a few levels of the tree.
- 1. Let the root node be at level 0. Give a formula for the size of the input at level i.
- 2. What is the number of nodes at level i?
- 3. What is the work done at the i^{th} recursive level?
- 4. What is the last level of the tree?
- 5. What is the work done at the base case?
- 6. Write an expression for the total work done.
- 7. Simplify until you have a "closed form" (i.e. no summations or recursion).

Geometric series identities:

$$\sum_{i=0}^{k} c^{i} = \frac{c^{k+1} - 1}{c - 1} \qquad \qquad \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c} \text{ if } |c| < 1$$

Common Summations:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \qquad \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \qquad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Log identities:

$$a^{\log_b(c)} = c^{\log_b(a)} \qquad \log_b(a) = \frac{\log_d(a)}{\log_d(b)}$$

Master Theorem:

Given a recurrence of the following form:

$$T(n) = \begin{cases} d & \text{if } n \leq \text{ some constant} \\ aT(n/b) + n^c & \text{otherwise} \end{cases}$$

with a, b, c are constants. If $\log_b(a) < c$ then T(n) is $\Theta(n^c)$ If $\log_b(a) = c$ then T(n) is $\Theta(n^c \log n)$ If $\log_b(a) > c$ then T(n) is $\Theta\left(n^{\log_b(a)}\right)$