Exercise 07

Building Sorts v2.0

Due Date: Wednesday July 31, 11:59 PM
Submit as a pdf to gradescope.

In this exercise we’ll see how sorting relates to building data structures that maintain some sort of ordering property (here, heaps and AVL trees).

1. We saw Floyd’s BuildHeap could improve the running time of HeapSort by a constant factor. In this problem, we’ll use Floyd’s BuildHeap to design sorting-like algorithms where the BuildHeap method gives us a better asymptotic running time.

Consider the k-sorting problem.

k-sorting
Given an array of unsorted elements, find the k smallest elements in the array.

Consider three algorithms for this problem:

<table>
<thead>
<tr>
<th>Algorithm A</th>
<th>Algorithm B</th>
<th>Algorithm C</th>
</tr>
</thead>
</table>
| The $O(n \log k)$ algorithm you implemented in Project 2. | Heap $H = \text{empty heap}$
for (i from 1 to n)
$H.\text{insert}(A[i])$
for (i from 1 to k)
print $H.\text{removeMin}()$ | Heap $H = \text{BuildHeap}(A)$
for (i from 1 to k)
print $H.\text{removeMin}()$ |

In all of the following problems about running times, your $O()$ bounds must be as simple and tight as possible.

(a) What are the running times of Algorithms B and C? (give $O()$ bounds in terms of n and k)? [2 points]
(b) If k is a constant, what do the big-O running times of A, B, and C become? (Your answers for this part should not have k anywhere – big-O notation suppresses constants) [2 points]

(c) If $k = \sqrt{n}$, what do the big-O running times of A, B, and C become? [2 points]

(d) Explain when algorithm C is faster than B by more than a constant factor (your answers to previous parts may give you some direction here). [2 points]

(e) Give a scenario in which you would use Algorithm A over B and C, and explain why it is better. [2 points]

2. We spent half of a lecture designing BuildHeap. We did not do the same for BuildAVL:

```
BuildAVL
Given an unsorted array, create an AVL tree containing the elements of the array.
```

In this problem, we’ll figure out why we haven’t gone over it.

(a) First, we’ll do a reduction. Design an algorithm to sort an array that uses BuildAVL as a black box. Your algorithm should do only $O(n)$ work beyond the BuildAVL call, and no extra comparisons. [4 points]

(b) Now use the reduction you found in part a to argue that any comparison-based algorithm for BuildAVL must take $\Omega(n \log n)$ time. (Hint: use proof by contradiction – what happens if the BuildAVL algorithm is faster?) [4 points]

(c) Explain why an AVL Tree you implemented in Project 2 has to use comparisons (i.e. why you couldn’t use a fancy $O(n)$ sort as part of some hypothetical BuildAVL method) (this question does not rely on parts a or b) [2 points]

Now it’s clear why we didn’t design a fancy BuildAVL algorithm – it doesn’t exist!

1 The kind covered in 311, NOT a parallel reduce.