CSE 332: Data Structures & Parallelism
Lecture 23: Disjoint Sets

Ruth Anderson
Autumn 2019
Aside: Union-Find aka Disjoint Set ADT

- **Union**(x,y) – take the union of two sets named x and y
 - Given sets: \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 - **Union**(5,1)
 Result: \{3,5,7,1,6\}, \{4,2,8\}, \{9\}

To perform the union operation, we replace sets x and y by \((x \cup y)\)

- **Find**(x) – return the name of the set containing x.
 - Given sets: \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 - **Find**(1) returns 5
 - **Find**(4) returns 8

- We can do Union in constant time.
- We can get Find to be *amortized* constant time
 (worst case \(O(\log n)\) for an individual Find operation).
Implementing the DS ADT

- n elements, Total Cost of: m finds, $\leq n-1$ unions
- Target complexity: $O(m+n)$
 \[i.e. \quad O(1) \text{ amortized} \]
- $O(1)$ worst-case for find as well as union would be great, but…

Known result: both find and union *cannot* be done in worst-case $O(1)$ time
Data Structure for the DS ADT

• **Observation**: trees let us find many elements given one root…

• **Idea**: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements…

• **Idea**: Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Disjoint Union/Find

Initial state: 1 2 3 4 5 6 7

After several Unions:

Roots are the names of each set.
Find Operation

Find(x) - follow x to the root and return the root

Find(6) = 7
Union Operation

Union(x, y) - assuming x and y are roots, point y to x.
Simple Implementation

- Array of indices

| up | 0 | 1 | 0 | 7 | 7 | 5 | 0 |

Up[x] = 0 means x is a root.
Implementation

```cpp
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }

    return x;
}
```

```cpp
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
A Bad Case

Union(2,1)

Union(3,2)

Union(n,n-1)

Find(1) n steps!!

Union(x,y) – “point y to x”
Now this doesn’t look good 😕

Can we do better? Yes!

1. Improve **union** so that **find** only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve **find** so that it becomes even better!
 - Path compression
 - Reduces complexity to **almost** $\Theta(m + n)$
Weighted Union/Union by Size

- Weighted Union
 - Always point the *smaller* (total # of nodes) tree to the root of the larger tree

![Diagram showing Weighted Union process]

W-Union(1,7)
Example Again

\[W - \text{Union}(2,1) \]
\[W - \text{Union}(3,2) \]
\[W - \text{Union}(n,2) \]

\[\text{Find}(1) \quad \text{constant time} \]
Analysis of Weighted Union

With weighted union an up-tree of height h has weight \textit{at least} 2^h.

- \textbf{Proof by induction}
 - \textbf{Basis}: $h = 0$. The up-tree has one node, $2^0 = 1$
 - \textbf{Inductive step}: Assume true for all $h' < h$.

\begin{align*}
W(T_1) & \geq W(T_2) \geq 2^{h-1} \\
W(T) & \geq 2^{h-1} + 2^{h-1} = 2^h
\end{align*}
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\[n \geq 2^h \]
\[\log_2 n \geq h \]

- Find(x) in tree T takes $O(\log n)$ time.
 - Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After \(\frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Weighted Unions:

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).
Array Implementation

```
  2  1  3  4
  1  2

  5  6  7
  4
```

```
up weight
-1 1 -1 7 7 5 -1
2 1
```

12/02/2019
Weighted Union

\[\text{W-Union}(i, j : \text{index}) \{ \]
// i and j are roots
\[w_i := \text{weight}[i]; \]
\[w_j := \text{weight}[j]; \]
\[\text{if } w_i < w_j \text{ then} \]
\[\quad \text{up}[i] := j; \]
\[\quad \text{weight}[j] := w_i + w_j; \]
\[\text{else} \]
\[\quad \text{up}[j] := i; \]
\[\quad \text{weight}[i] := w_i + w_j; \]
\[\} \]

new runtime for Union():

def runtime for m finds and n-1 unions =
Nifty Storage Trick

• Use the same array representation as before

• Instead of storing -1 for the root, simply store $-\text{size}$

[Read section 8.4]
How about Union-by-height?

- Can still guarantee $O(\log n)$ worst case depth

 Left as an exercise!

- Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next
Now this doesn’t look good 😞

Can we do better? Yes!

1. DONE: Improve union so that find only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. NOW: Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

PC-\text{Find}(3)
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

PC-Find(3)
Draw the result of Find(e):
Self-Adjustment Works
Path Compression Find

```plaintext
PC-Find(i : index) {
    r := i;
    while up[r] ≠ -1 do //find root//
        r := up[r];
    if i ≠ r then  //compress path//
        k := up[i];
        while k ≠ r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```
Path Compression: Code

```java
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;

    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }

    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) {
        temp = up[i];
        up[i] = xID;
        i = temp;
    }

    return xID;
}
```

(New?) runtime for Find:
Interlude: A Really Slow Function

Ackermann’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small.

How fast does $\alpha(x, y)$ grow?

$\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{300})

α shows up in:

– Computation Geometry (surface complexity)
– Combinatorics of sequences
A More Comprehensible Slow Function

\[\log^* x = \text{number of times you need to compute } \log \text{ to bring value down to at most 1} \]

E.g. \[\log^* 2 = 1 \]
\[\log^* 4 = \log^* 2^2 = 2 \]
\[\log^* 16 = \log^* 2^{2^2} = 3 \] \hspace{1cm} (\log \log \log 16 = 1)
\[\log^* 65536 = \log^* 2^{2^{2^2}} = 4 \] \hspace{1cm} (\log \log \log \log 65536 = 1)
\[\log^* 2^{65536} = \ldots \ldots \ldots = 5 \]

Take this: \(\alpha(m,n) \) grows even slower than \(\log^* n \)!!
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For all practical purposes this is amortized constant time:

$O(p \cdot 4)$ for p operations!

• Complex analysis
Disjoint Union / Find
with Weighted Union and PC

- Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 - $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!
- Using “ranked union” gives an even better bound theoretically.
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 – average time per operation is essentially a constant.
 – worst case time for a PC-Find is $O(\log n)$.
• An individual operation can be costly, but over time the average cost per operation is not.