CSE 332: Data Structures & Parallelism
Lecture 16: Parallel Prefix, Pack, and Sorting

Ruth Anderson
Autumn 2019
Outline

Done:
 – Simple ways to use parallelism for counting, summing, finding
 – Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible
 – Parallel prefix:
 • This “key trick” typically underlies surprising parallelization
 • Enables other things like packs (aka filters)
 – Parallel sorting: quicksort (not in place) and mergesort
 • Easy to get a little parallelism
 • With cleverness can get a lot
The prefix-sum problem

Given `int[] input`, produce `int[] output` where:

\[
output[i] = input[0]+input[1]+...+input[i]
\]

Sequential can be a CSE142 exam problem:

```java
int[] prefix_sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

Does not seem parallelizable

- Work: \(O(n) \), Span: \(O(n) \)
- This algorithm is sequential, but a different algorithm has
 Work: \(O(n) \), Span: \(O(\log n) \)
Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So like with array summing, parallelism is $\frac{n}{\log n}$
 - An exponential speedup

- First pass builds a tree bottom-up: the “up” pass

- Second pass traverses the tree top-down: the “down” pass
Local bragging

Historical note:
- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? 1973? recent
Parallel Prefix: The Up Pass

We build want to build a binary tree where
- Root has sum of the range \([x,y)\)
- If a node has sum of \([lo,hi)\) and \(hi>lo\),
 - Left child has sum of \([lo,middle)\)
 - Right child has sum of \([middle,hi)\)
 - A leaf has sum of \([i,i+1)\), which is simply input\([i]\)

It is critical that we actually create the tree as we will need it for the down pass
- We do not need an actual linked structure
- We could use an array as we did with heaps

Analysis of first step: Work = Span =
The algorithm, part 1

Specifically…..

1. Propagate ‘sum’ up: Build a binary tree where
 – Root has sum of input[0]..input[n-1]
 – Each node has sum of input[lo]..input[hi-1]
 • Build up from leaves; parent.sum=left.sum+right.sum
 – A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges
 – Tree built bottom-up in parallel
 – Could be more clever; ex. Use an array as tree representation like we did for heaps

Analysis of first step: $O(n)$ work, $O(\log n)$ span
The (completely non-obvious) idea:
Do an initial pass to gather information, enabling us to do a second pass to get the answer

First we’ll gather the ‘sum’ for each recursive block

<table>
<thead>
<tr>
<th>Input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11/04/2019
First pass

For each node, get the sum of all values in its range; propagate sum up from leaves.

Will work like parallel sum, but recording intermediate information.

<table>
<thead>
<tr>
<th>Input</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>16</td>
<td>10</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
The algorithm, part 2

2. Propagate ‘fromleft’ down:
 – Root given a fromLeft of 0
 – Node takes its fromLeft value and
 • Passes its left child the same fromLeft
 • Passes its right child its fromLeft plus its left child’s sum (as stored in part 1)
 – At the leaf for array position i,
 \[\text{output}[i] = \text{fromLeft} + \text{input}[i] \]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to output)

– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: \(O(n) \) work, \(O(\log n) \) span

Analysis of second step:

Total for algorithm:
The algorithm, part 2

2. Propagate ‘fromleft’ down:
 - Root given a \texttt{fromLeft} of 0
 - Node takes its \texttt{fromLeft} value and
 • Passes its left child the same \texttt{fromLeft}
 • Passes its right child its \texttt{fromLeft} plus its left child’s \texttt{sum}
 (as stored in part 1)
 - At the leaf for array position \textit{i},
 \texttt{output}[i]=\texttt{fromLeft}+\texttt{input}[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to \texttt{output})

 - Invariant: \texttt{fromLeft} is sum of elements left of the node’s range

Analysis of first step: \textit{O(n)} work, \textit{O(log n)} span
Analysis of second step: \textit{O(n)} work, \textit{O(log n)} span
Total for algorithm: \textit{O(n)} work, \textit{O(log n)} span
Second pass

Using ‘sum’, get the sum of everything to the left of this range (call it ‘fromleft’); propagate down from root.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>52</td>
</tr>
<tr>
<td>14</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
</tr>
</tbody>
</table>
Sequential cut-off

Adding a sequential cut-off isn’t too bad:

• **Step One**: Propagating Up the *sums*:
 – Have a leaf node just hold the sum of a range of values instead of just one array value (Sequentially compute sum for that range)
 – The tree itself will be shallower

• **Step Two**: Propagating Down the *fromLefts*:
 – Have leaf compute prefix sum sequentially over its \([lo,hi]\):

    ```
    output[lo] = fromLeft + input[lo];
    for(i=lo+1; i < hi; i++)
        output[i] = output[i-1] + input[i]
    ```
Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

• Minimum, maximum of all elements to the left of \(i \)

• Is there an element to the left of \(i \) satisfying some property?

• Count of elements to the left of \(i \) satisfying some property
 – This last one is perfect for an efficient parallel pack…
 – Perfect for building on top of the “parallel prefix trick”
Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that $f(\text{element})$ is true

Example: input $[17, 4, 6, 8, 11, 5, 13, 19, 0, 24]$

 f: “is element > 10”

 output $[17, 11, 13, 19, 24]$

Parallelizable?
 – Determining whether an element belongs in the output is easy
 – But determining where an element belongs in the output is hard; seems to depend on previous results....
Parallel Pack = (Soln)
parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
 input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
 output [17, 11, 13, 19, 24]

 output = new array of size bitsum[n-1]
 FORALL (i=0; i < input.length; i++){
 }

In this example, Filter = element > 10
Pack comments

- First two steps can be combined into one pass
 - Just using a different base case for the prefix sum
 - No effect on asymptotic complexity

- Can also combine third step into the down pass of the prefix sum
 - Again no effect on asymptotic complexity

- Analysis: $O(n)$ work, $O(\log n)$ span
 - 2 or 3 passes, but 3 is a constant 😊

- Parallelized packs will help us parallelize quicksort…
Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 A. The elements less than the pivot $O(n)$
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C $2T(n/2)$

Recurrence (assuming a good pivot):

$$T(0)=T(1)=1$$
$$T(n)=\text{________________________}$$

Run-time: $O(n\log n)$

How should we parallelize this?
Review: Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[T(n) = O(1) + T(n-1) \] linear
\[T(n) = O(1) + 2T(n/2) \] linear
\[T(n) = O(1) + T(n/2) \] logarithmic
\[T(n) = O(1) + 2T(n-1) \] exponential
\[T(n) = O(n) + T(n-1) \] quadratic
\[T(n) = O(n) + T(n/2) \] linear

\[T(n) = O(n) + 2T(n/2) \] \(O(n \log n) \)

Note big-Oh can also use more than one variable
• Example: can sum all elements of an \(n \)-by-\(m \) matrix in \(O(nm) \)
Parallel Quicksort (version 1)

1. Pick a pivot element \(O(1) \)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n) \)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2) \)

First: Do the two recursive calls in parallel

- **Work:**
- **Span:** now recurrence takes the form:
Doing better

- $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort 10^9 elements 30 times faster

- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong 😊
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl’s Law…(exposing parallelism is important!)

- Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

• This is just two packs!
 – We know a pack is $O(n)$ work, $O(\log n)$ span
 – Pack elements less than pivot into left side of aux array
 – Pack elements greater than pivot into right size of aux array
 – Put pivot between them and recursively sort
 – With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

• With ________ span for partition, the total span for quicksort is $T(n) =$
Parallel Quicksort Example (version 2)

• Step 1: pick pivot as median of three

\[8 \quad 1 \quad 4 \quad 9 \quad 0 \quad 3 \quad 5 \quad 2 \quad 7 \quad 6\]

• Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 – Fancy parallel prefix to pull this off (not shown)

\[1 \quad 4 \quad 0 \quad 3 \quad 5 \quad 2\]
\[1 \quad 4 \quad 0 \quad 3 \quad 5 \quad 2 \quad 6 \quad 8 \quad 9 \quad 7\]

• Step 3: Two recursive sorts in parallel
 – Can sort back into original array (like in mergesort)
Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
 $2T(n/2)$
2. Merge results
 $O(n)$

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the Span to $T(n) = O(n) + 1T(n/2) = O(n)$

- Again, Work is $O(n \log n)$, and
- parallelism is work/span = $O(\log n)$
- To do better, need to parallelize the merge
 - The trick won’t use parallel prefix this time…
Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

Idea: Suppose the larger subarray has \(m \) elements. In parallel:

- Merge the first \(m/2 \) elements of the larger half with the “appropriate” elements of the smaller half
- Merge the second \(m/2 \) elements of the larger half with the rest of the smaller half
Parallelizing the merge (in more detail)

Need to merge two **sorted** subarrays (may not have the same size)

Idea: Recursively divide subarrays in half, merge halves in parallel

Suppose the larger subarray has \(m \) elements. In parallel:

- Pick the **median** element of the larger array (here 6) in constant time
- In the other array, use binary search to find the first element greater than or equal to that median (here 7)

Then, in parallel:

- Merge half the larger array (from the median onward) with the upper part of the shorter array
- Merge the lower part of the larger array with the lower part of the shorter array
Example: Parallelizing the Merge

```
0 4 6 8 9
1 2 3 5 7
```
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
1. Get median of bigger half: $O(1)$ to compute middle index

2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: $O(1)$
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
3. Two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel
Example: Parallelizing the Merge

merge
0 4 1 2 3 5
0 4 1 2 3 5

merge
0 1 2
0 1 2

merge
4 3 5
4 3 5

merge
6 8 7 9
6 8 7 9

merge
6 8 7 9
6 8 7 9

merge
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Example: Parallelizing the Merge

When we do each merge in parallel:
- we split the bigger array in half
- use binary search to split the smaller array
- And in base case we do the copy
Parallel Merge Pseudocode

Merge(arr[], left_1, left_2, right_1, right_2, out[], out_1, out_2)

 int leftSize = left_2 - left_1
 int rightSize = right_2 - right_1
 // Assert: out_2 - out_1 = leftSize + rightSize
 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)
 sequential merge and copy into out[out_1..out_2]

 int mid = (left_2 - left_1)/2
 binarySearch arr[right_1..right_2] to find j such that
 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left_1, mid, right_1, j, out[], out_1, out_1+mid+j)
 Merge(arr[], mid+1, left_2, j+1, right_2, out[], out_1+mid+j+1, out_2)
Analysis

- **Sequential** mergesort:
 \[T(n) = 2T(n/2) + O(n) \]
 which is \(O(n \log n) \)

- Doing the *two recursive calls in parallel* but a **sequential merge**:
 - **Work**: same as sequential
 - **Span**:
 \[T(n) = T(n/2) + O(n) \]
 which is \(O(n) \)

- **Parallel merge** makes **work** and **span** harder to compute…
 - Each merge step does an extra \(O(\log n) \) binary search to find how to split the smaller subarray
 - To merge \(n \) elements total, do two smaller merges of possibly different sizes
 - But worst-case split is \((3/4)n\) and \((1/4)n\)
 - Happens when the two subarrays are of the same size \((n/2)\) and the “smaller” subarray splits into two pieces of the most uneven sizes possible: one of size \(n/2\), one of size 0
Analysis continued

For just a parallel merge of \(n \) elements:
- **Work** is \(T(n) = T(3n/4) + T(n/4) + O(\log n) \) which is \(O(n) \)
- **Span** is \(T(n) = T(3n/4) + O(\log n) \), which is \(O(\log^2 n) \)
- (neither bound is immediately obvious, but “trust me”)

So for **mergesort** with *parallel merge* overall:
- **Work** is \(T(n) = 2T(n/2) + O(n) \), which is \(O(n \log n) \)
- **Span** is \(T(n) = 1T(n/2) + O(\log^2 n) \), which is \(O(\log^3 n) \)

So parallelism (work / span) is \(O(n / \log^2 n) \)
 - Not quite as good as quicksort’s \(O(n / \log n) \)
 - But (unlike Quicksort) this is a worst-case guarantee
 - And as always this is just the asymptotic result