CSE 332: Data Structures & Parallelism
Lecture 11: More Hashing

Ruth Anderson
Autumn 2019
Today

- Dictionaries
 - Hashing
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) **find**, **insert**, and **delete**
 - “On average” under some reasonable **assumptions**

- A hash table is an array of some fixed size
 - But growable as we’ll see

```
client
E int
arrow    arrow
  table-index collision?
```

<table>
<thead>
<tr>
<th></th>
<th>client</th>
<th>hash table library</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>int</td>
<td>table-index collision? collision resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

TableSize – 1
Hashing Choices

1. Choose a Hash function
2. Choose TableSize
3. Choose a Collision Resolution Strategy from these:
 – Separate Chaining
 – Open Addressing
 • Linear Probing
 • Quadratic Probing
 • Double Hashing

• Other issues to consider:
 – Deletion?
 – What to do when the hash table gets “too full”?
Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If \(h(key) \) is already full,
 - try \((h(key) + 1) \mod \text{TableSize}\). If full,
 - try \((h(key) + 2) \mod \text{TableSize}\). If full,
 - try \((h(key) + 3) \mod \text{TableSize}\). If full...

- Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

- Another simple idea: If $h(key)$ is already full, try $(h(key) + 1) \% \text{TableSize}$. If full, try $(h(key) + 2) \% \text{TableSize}$. If full, try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Addressing: Linear Probing

• Another simple idea: if \(h(\text{key}) \) is already full, try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full, try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full, try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...

• Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Open Addressing: Linear Probing

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \% \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Open Addressing: Linear Probing

- Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>109</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the next spot is called probing
 - We just did linear probing:
 • i^{th} probe: $(h(key) + i) \mod TableSize$
 - In general have some probe function f and:
 • i^{th} probe: $(h(key) + f(i)) \mod TableSize$

Open addressing does poorly with high load factor λ
 - So want larger tables
 - Too many probes means no more $O(1)$
Terminology

We and the book use the terms
- “chaining” or “separate chaining”
- “open addressing”

Very confusingly,
- “open hashing” is a synonym for “chaining”
- “closed hashing” is a synonym for “open addressing”
Open Addressing: Linear Probing

What about `find`? If value is in table? If not there? Worst case?

What about `delete`?

How does open addressing with linear probing compare to separate chaining?
Open Addressing: Other Operations

`insert` finds an open table position using a probe function

What about `find`?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about `delete`?
- **Must** use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”
 - As with lazy deletion on other data structures, on insert, spots marked “deleted” can be filled in.
- Note: `delete` with chaining is plain-old list-remove
Primary Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (a good thing)

- Tends to produce clusters, which lead to long probe sequences
- Called primary clustering
- Saw the start of a cluster in our linear probing example

[R. Sedgewick]
Analysis of Linear Probing

• **Trivial fact:** For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• **Non-trivial facts** we won’t prove:
 Average # of probes given λ (in the limit as $TableSize \to \infty$)
 – Unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)
 \]
 – Successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)
 \]

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
Analysis in chart form

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, separate chaining performance is linear in \(\lambda \) and has no trouble with \(\lambda > 1 \)
Open Addressing: Linear probing

\[(h(\text{key}) + f(i)) \mod \text{TableSize}\]

- For linear probing:
 \[f(i) = i\]

- So probe sequence is:
 - 0\(^\text{th}\) probe: \(h(\text{key}) \mod \text{TableSize}\)
 - 1\(^\text{st}\) probe: \((h(\text{key}) + 1) \mod \text{TableSize}\)
 - 2\(^\text{nd}\) probe: \((h(\text{key}) + 2) \mod \text{TableSize}\)
 - 3\(^\text{rd}\) probe: \((h(\text{key}) + 3) \mod \text{TableSize}\)
 - ...
 - i\(^\text{th}\) probe: \((h(\text{key}) + i) \mod \text{TableSize}\)
Open Addressing: Quadratic probing

- We can avoid primary clustering by changing the probe function...

\[(h(key) + f(i)) \mod \text{TableSize}\]

 - For quadratic probing:
 \[f(i) = i^2\]

 - So probe sequence is:
 - 0th probe: \(h(key) \mod \text{TableSize}\)
 - 1st probe: \((h(key) + 1) \mod \text{TableSize}\)
 - 2nd probe: \((h(key) + 4) \mod \text{TableSize}\)
 - 3rd probe: \((h(key) + 9) \mod \text{TableSize}\)
 - ...
 - \(ith \) probe: \((h(key) + i^2) \mod \text{TableSize}\)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

Table Size = 10
Insert:
89
18
49
58
79

ith probe: \((h(key) + i^2) \mod \text{TableSize}\)
Quadratic Probing Example

TableSize = 10
insert(89)
Quadratic Probing Example

TableSize = 10

- insert(89)
- insert(18)
Quadratic Probing Example

TableSize = 10

- insert(89)
- insert(18)
- insert(49)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quadratic Probing Example

TableSize = 10

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

insert(89)

insert(18)

insert(49)

49 % 10 = 9 **collision!**

(49 + 1) % 10 = 0

insert(58)
Quadratic Probing Example

TableSize = 10

insert(89)
insert(18)
insert(49)
insert(58)

58 \% 10 = 8 \text{ collision!}

(58 + 1) \% 10 = 9 \text{ collision!}

(58 + 4) \% 10 = 2

insert(79)
Quadratic Probing Example

Table Size $= 10$

- **insert(89)**
- **insert(18)**
- **insert(49)**
- **insert(58)**
- **insert(79)**

1. $79 \mod 10 = 9$ **collision!**
2. $(79 + 1) \mod 10 = 0$ **collision!**
3. $(79 + 4) \mod 10 = 3$
Another Quadratic Probing Example

\[
\text{ith probe: } (h(\text{key}) + i^2) \mod \text{TableSize}
\]

TableSize = 7

Insert:

76 \quad (76 \mod 7 = 6)

40 \quad (40 \mod 7 = 5)

48 \quad (48 \mod 7 = 6)

5 \quad (5 \mod 7 = 5)

55 \quad (55 \mod 7 = 6)

47 \quad (47 \mod 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:

76 \ (76 \% \ 7 = 6)
40 \ (40 \% \ 7 = 5)
48 \ (48 \% \ 7 = 6)
5 \ (5 \% \ 7 = 5)
55 \ (55 \% \ 7 = 6)
47 \ (47 \% \ 7 = 5)

ith probe: \ (h(key) + i^2) \ % \ TableSize
Another Quadratic Probing Example

Insert:

- 76 \ (76 \% 7 = 6)
- 40 \ (40 \% 7 = 5)
- 48 \ (48 \% 7 = 6)
- 5 \ (5 \% 7 = 5)
- 55 \ (55 \% 7 = 6)
- 47 \ (47 \% 7 = 5)

TableSize = 7

ith probe: \(h(key) + i^2 \) \% TableSize
Another Quadratic Probing Example

TableSize $= 7$

Insert:

- 76 ($76 \% 7 = 6$)
- 40 ($40 \% 7 = 5$)
- 48 ($48 \% 7 = 6$)
- 5 ($5 \% 7 = 5$)
- 55 ($55 \% 7 = 6$)
- 47 ($47 \% 7 = 5$)

ith probe: $(h(key) + i^2) \% TableSize$
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Probe</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td></td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

Ith probe: \(h(key) + i^2 \mod \text{TableSize}\)
Another Quadratic Probing Example

TableSize = 7

Insert:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

ITH probe: \(h(key) + i^2 \mod TableSize\)

- 76 \((76 \mod 7 = 6) \)
- 40 \((40 \mod 7 = 5) \)
- 48 \((48 \mod 7 = 6) \)
- 5 \((5 \mod 7 = 5) \)
- 55 \((55 \mod 7 = 6) \)
- 47 \((47 \mod 7 = 5) \)
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Insert</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

\[(47 + 1) \mod 7 = 6 \text{ collision!}\]
\[(47 + 4) \mod 7 = 2 \text{ collision!}\]
\[(47 + 9) \mod 7 = 0 \text{ collision!}\]
\[(47 + 16) \mod 7 = 0 \text{ collision!}\]
\[(47 + 25) \mod 7 = 2 \text{ collision!}\]

Will we ever get a 1 or 4?!?
Another Quadratic Probing Example

insert(47) will always fail here. Why?

For all \(i \), \((5 + i^2) \mod 7\) is 0, 2, 5, or 6

Proof uses induction and

\[
(5 + i^2) \mod 7 = (5 + (i - 7)^2) \mod 7
\]

In fact, for all \(c \) and \(k \),

\[
(c + i^2) \mod k = (c + (i - k)^2) \mod k
\]
From bad news to good news

Bad News:
- After TableSize quadratic probes, we cycle through the same indices

Good News:
- If TableSize is prime and \(\lambda < \frac{1}{2} \), then quadratic probing will find an empty slot in at most \(\frac{\text{TableSize}}{2} \) probes
- So: If you keep \(\lambda < \frac{1}{2} \) and TableSize is prime, no need to detect cycles
- Proof posted in lecture11.txt (slightly less detailed proof in textbook)

 For prime TableSize and \(0 \leq i, j \leq \frac{\text{TableSize}}{2} \) where \(i \neq j \),
 \[
 (h(\text{key}) + i^2) \mod \text{TableSize} \neq (h(\text{key}) + j^2) \mod \text{TableSize}
 \]
 That is, if TableSize is prime, the first TableSize/2 quadratic probes map to different locations (and one of those will be empty if the table is < half full).
Quadratic Probing:
Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all $0 \leq i, j \leq \text{size}/2$ and $i \neq j$
 $$\text{(h(x) + } i^2 \times \text{mod size)} \neq \text{(h(x) + } j^2 \times \text{mod size)}$$
 - by contradiction: suppose that for some $i \neq j$:
 $$(\text{h(x) + } i^2 \times \text{mod size}) = (\text{h(x) + } j^2 \times \text{mod size})$$
 $$\Rightarrow \ i^2 \times \text{mod size} = j^2 \times \text{mod size}$$
 $$\Rightarrow \ (i^2 - j^2) \times \text{mod size} = 0$$
 $$\Rightarrow \ [(i + j)(i - j)] \times \text{mod size} = 0$$
 BUT size does not divide $(i-j)$ or $(i+j)$

How can $i+j = 0$ or $i+j = \text{size}$ when:
$$i \neq j \quad \text{and} \quad 0 \leq i, j \leq \text{size}/2?$$
Similarly how can $i-j = 0$ or $i-j = \text{size}$?

First size/2 probes distinct. If < half full, one is empty.
Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: As we resolve collisions we are not merely growing “big blobs” by adding one more item to the end of a cluster, we are looking i^2 locations away, for the next possible spot.

• But quadratic probing does not help resolve collisions between keys that initially hash to the same index:
 – Any 2 keys that initially hash to the same index will have the same series of moves after that looking for any empty spot
 – Called secondary clustering

• Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key, $h(key) == g(key)$

$$(h(key) + f(i)) \mod \text{TableSize}$$

- For double hashing:

$$f(i) = i \times g(key)$$

- So probe sequence is:
 - 0^{th} probe: $h(key) \mod \text{TableSize}$
 - 1^{st} probe: $(h(key) + g(key)) \mod \text{TableSize}$
 - 2^{nd} probe: $(h(key) + 2 \times g(key)) \mod \text{TableSize}$
 - 3^{rd} probe: $(h(key) + 3 \times g(key)) \mod \text{TableSize}$
 - ...
 - i^{th} probe: $(h(key) + i \times g(key)) \mod \text{TableSize}$

- Detail: Make sure $g(key)$ can’t be 0
Open Addressing: Double Hashing

T = 10 (TableSize)

Hash Functions:

\[h(key) = key \mod T \]

\[g(key) = 1 + \left(\frac{key}{T} \right) \mod (T - 1) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43
Double Hashing

- **T** = 10 (TableSize)

Hash Functions:

\[h(key) = key \mod T \]

\[g(key) = 1 + ((key/T) \mod (T-1)) \]

- Insert these values into the hash table in this order. Resolve any collisions with double hashing:
 - 13
 - 28
 - 33
 - 147
 - 43
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43

Hash Functions:

\[h(key) = key \mod T \]
\[g(key) = 1 + ((key/T) \mod (T-1)) \]

10/21/2019
Double Hashing

Hash Functions:

- $h(key) = key \mod T$
- $g(key) = 1 + ((key/T) \mod (T-1))$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147
- 43

```latex
ith probe: (h(key) + i \times g(key)) \mod TableSize
```
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147

\[g(147) = 1 + 14 \mod 9 = 6 \]

43

Hash Functions:

\[h(key) = key \mod T \]
\[g(key) = 1 + ((key/T) \mod (T-1)) \]

\[T = 10 \text{ (TableSize)} \]
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147

Hash Functions:

\[h(key) = key \mod T \]

\[g(key) = 1 + ((key/T) \mod (T-1)) \]

10/21/2019
Double-hashing analysis

- **Intuition**: Since each probe is “jumping” by $g(key)$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

But, as in quadratic probing, we could still have a problem where we are not "safe" due to an infinite loop despite room in table
 - It is known that this cannot happen in at least one case:
 - For primes p and q such that $2 < q < p$
 - $h(key) = key \% p$
 - $g(key) = q - (key \% q)$
Yet another reason to use a prime TableSize

- So, for double hashing

 \[h(key) + i \times g(key) \mod \text{TableSize} \]

- Say \(g(key) \) divides Tablesize

 – That is, there is some integer \(x \) such that \(x \times g(key) = \text{Tablesize} \)

 – After \(x \) probes, we’ll be back to trying the same indices as before

- Ex:

 – Tablesize=50

 – \(g(key) = 25 \)

 – Probing sequence:

 - \(h(key) \)

 - \(h(key) + 25 \)

 - \(h(key) + 50 = h(key) \)

 - \(h(key) + 75 = h(key) + 25 \)

- Only 1 & itself divide a prime
More double-hashing facts

• Assume “uniform hashing”
 – Means probability of $g(\text{key1}) \mod p = g(\text{key2}) \mod p$ is $1/p$

• Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as TableSize $\rightarrow \infty$)
 – Unsuccessful search (intuitive):
 $$\frac{1}{1 - \lambda}$$
 – Successful search (less intuitive):
 $$\frac{1}{\lambda} \log_e \left(\frac{1}{1 - \lambda} \right)$$

• Bottom line: unsuccessful bad (but not as bad as linear probing),
 but successful is not nearly as bad
Charts

Uniform Hashing

Load Factor

Average # of Probes

- uniform hashing not found
- uniform hashing found

Linear Probing

Load Factor

Average # of Probes

- linear probing not found
- linear probing found
Where are we?

- **Separate Chaining** is easy
 - *find, insert, delete* proportional to load factor on average if using unsorted linked list nodes
 - If using another data structure for buckets (e.g. AVL tree), runtime is proportional to runtime for that structure.

- **Open addressing** uses probing, has clustering issues as table fills

 Why use it:
 - Less memory allocation?
 - Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
 - Easier data representation?

- **Now:**
 - Growing the table when it gets too full (aka “rehashing”)
 - Relation between hashing/comparing and connection to Java
Rehashing

• As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over

• With **separate chaining**, we get to decide what “too full” means
 – Keep load factor reasonable (e.g., < 1)?
 – Consider average or max size of non-empty chains?

• For **open addressing**, half-full is a good rule of thumb

• New table size
 – Twice-as-big is a good idea, except, uhm, that won’t be prime!
 – So go *about* twice-as-big
 – Can have a list of prime numbers in your code since you probably won’t grow more than 20-30 times, and then calculate after that
More on rehashing

- What if we copy all data to the same indices in the new table?
 - Will not work; we calculated the index based on TableSize

- Go through table, do standard insert for each into new table
 - Iterate over old table: O(n)
 - n inserts / calls to the hash function: $n \cdot O(1) = O(n)$

- Is there some way to avoid all those hash function calls?
 - Space/time tradeoff: Could store $h(key)$ with each data item
 - Growing the table is still $O(n)$; saving $h(key)$ only helps by a constant factor
Hashing and comparing

• Our use of int key can lead to us overlooking a critical detail:
 – We initially hash \(E \) to get a table index
 – While chaining or probing we need to determine if this is the \(E \) that I am looking for. Just need equality testing.

• So a hash table needs a hash function and a equality testing
 – In the Java library each object has an \texttt{equals} method and a \texttt{hashCode} method

```java
class Object {
    boolean equals(Object o) {...}
    int hashCode() {...}
    ...
}
```
Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy...

- Object-oriented way of saying it:

  ```java
  if a.equals(b), then we must require
  a.hashCode() == b.hashCode()
  ```

- Function object way of saying it:

  ```java
  if c.compare(a, b) == 0, then we must require
  h.hash(a) == h.hash(b)
  ```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals
By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
 – All our dictionaries
 – Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all \(a, b,\) and \(c,\)
 – If \(\text{compare}(a,b) < 0,\) then \(\text{compare}(b,a) > 0\)
 – If \(\text{compare}(a,b) == 0,\) then \(\text{compare}(b,a) == 0\)
 – If \(\text{compare}(a,b) < 0\) and \(\text{compare}(b,c) < 0,\)
 then \(\text{compare}(a,c) < 0\)
A Generally Good hashCode()

```java
int result = 17; // start at a prime

foreach field f
    int fieldHashcode =
        boolean: (f ? 1: 0)
        byte, char, short, int: (int) f
        long: (int) (f ^ (f >>> 32))
        float: Float.floatToIntBits(f)
        double: Double.doubleToLongBits(f), then above
        Object: object.hashCode()

    result = 31 * result + fieldHashcode;

return result;
```
Final word on hashing

• The hash table is one of the most important data structures
 – Efficient find, insert, and delete
 – Operations based on sorted order are not so efficient
 – Useful in many, many real-world applications
 – Popular topic for job interview questions
• Important to use a good hash function
 – Good distribution, Uses enough of key’s values
 – Not overly expensive to calculate (bit shifts good!)
• Important to keep hash table at a good size
 – Prime #
 – Preferable λ depends on type of table
• What we skipped: Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
• Side-comment: hash functions have uses beyond hash tables
 – Examples: Cryptography, check-sums