
B-Trees vs. HashTables

Construct input files for B-Trees and HashTables to demonstrate that a B-Tree is asympto�cally be�er
than a HashTable. To do this, we expect you to show trends. You might consider fi�ng a curve to your
results. Explain your intui�on on why your results are what they are.

Bad Answer #1:

As you can see here, the B-Tree clearly has be�er run �me at many different inputs. The graphs show
that both run �mes increase linearly, but the B-Tree always has a slightly lower run �me, so it’s definitely
the be�er data structure. All of our inputs are in the experiments file. We used different types of values:
integers, strings and objects containing (x,y) coordinate pairs. We thought it was very interes�ng that
both run �mes looked pre�y linearly, we would have expected more differences, but data is data! For
prac�cal use, we don’t see that there would be much of a difference in using either one of these since
HashTable’s run �me is only slightly worse than B-Tree’s.

What’s wrong?

Bad Answer #2:

Our B-Tree did have be�er run �me, as shown in the graph above. We think this is due to the fact that
the B-Tree is paging to disk efficiently, but the HashTable is having to page to disk far more o�en. We
tried two different kinds of input, one with very large keys with a lower M and L, and another with
smaller keys and a larger M and L. We found that in both cases, the B-Tree performed be�er. This
surprised us as HashTables usually work quite well with small values, but clearly if there are enough of
them, having to page to disk mul�ple �mes really does make a difference. We did try with small numbers
of small sized input as well, and as expected the HashTable performed be�er (we did not include this
graph, we just did it out of curiosity). This made sense to us as the whole advantage of a B-Tree is more
efficient disk look-ups, so the overhead in the B-Tree makes it perform worse than a HashTable with
small inputs. Up to this point we had wondered why we don’t hear more about B-Trees as they seem like
such a be�er data structure to use, but now we see that there are only specific cases where it is really
advantageous to use a B-Tree. (We know you said this in class, but now we’ve seen it in the data!) We
think this sort of data structure would be good for things like large file systems on servers, or perhaps an
applica�on like GoogleDocs where a company is storing a lot of files within a lot of nested directories.

What’s wrong?

