CSE 332: Data Structures and Parallelism

Section 3: BSTs and Recurrences Solutions

0. Interview Question: Binary Search Trees

Write pseudo-code to perform an in-order traversal in a binary search tree without using recursion.
Solution:

This algorithm is implemented as the BST Iterator in P2. Check it out!

1. Recurrences and Closed Forms

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a
closed form for the recurrence.

Consider the function f:

1 f(n) {

2 if (n == 0) {

3 return 1;

4 }

5 return 2 x f(n — 1) + 1;
6 }

» Find a recurrence for f(n).

Solution:

if n=0
T(n) = co if n
T(n—1)+c¢ otherwise

» Find a closed form for f(n).

Solution:

Unrolling the recurrence, we get T'(n) = c¢1 +¢1 + -+ -+ ¢1 +co = can + ¢p.

n times



2. Recurrences and Big-Oh Bounds

Consider the function f. Find a recurrence modeling the worst-case runtime of this function and then find a
Big-Oh bound for this recurrence.

1 f(n) {

2 if (n == 0) {

3 return 0

4 }

5

6 int result = 0

7 for (int i = 0; i < n; i++) {

8 for (int j = 0; j < i; j++) {
9 result += j

10

11 }

12 }

13 return f(n/2) + result + f(n/2)
14 }

(a)

Find a recurrence T'(n) modeling the worst-case time complexity of f(n).

Solution:

We look at the three separate components (base case, non-recursive work, recursive work). The base case
is a constant amount of work, because we only do a return statement. We'll label it ¢g. The non-recursive
work is a constant amount of work (we'll call it ¢1) for the assignments and if tests and a constant (we'll

n—1
-1
call ¢2) multiple of Zz = n(nQ) for the loops. The recursive work is 2T(%).
i=0
Putting these together, we get:

co ifn=20
T(n) = n n(n—1) -
2T (%) + co™%5= + 1 otherwise

Find a Big-Oh bound for your recurrence.

Solution:

Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as they

won't affect the runtime bounds; so, we can ignore the constants ¢; and cs in our analysis.

-1 2
Note that M n n

want a Big-Oh bound.

= — — — € O(n*). We can, again, ignore the lower-order term (2) since we only

2 2
2
The recursion tree has lg(n) height, each non-leaf node of the tree does (%) work, each leaf node does

¢o work, and each level has 2% nodes.

g(n)]-1 A2 llg(n)]-1 oi © /1
. ) lgn __ 2 2 _
So, the total work is Z; 2 <§) +cy-28" =n Z; <4@> +con < n Z(; <> + con =

n2

1—

1 + con.
2
This expression is upper-bounded by n? so T € O(n?).



3. Recurrences and Closed Forms
Consider the function g. Find a recurrence modeling the worst-case runtime of this function, and then find a
closed form for the recurrence.

1 g(n) {

2 if (n <=1) {

3 return 1000

4 b

5 if (g(n/3) > 5) {

6 for (int 1 = 0; i < n; i++) {
7 println("Yay!")

8 }

9 return 5 * g(n/3)

10 }

11 else {

12 for (int 1 = 0; i < n * n; i++) {
13 println("Yay!")

14 }

15 return 4 x g(n/3)

16 }

17 }

(a) Find a recurrence T'(n) modeling the worst-case time complexity of g(n).

Solution:

T(n):{CO ifn<l1

2T (%) + cin  otherwise
(b) Find a closed form for the above recurrence.

Solution:

01”2 , and the leaf level has work

The recursion tree has height logs(n), each non-leaf level i has work
co2!°83(")  Putting this together, we have:

logz(n)—1 cani logz(n)—1 9
' < } >+Czlog3 M e Z 3) 4 eqnlos®

21 logs(n
=cin ( (3) ) + con's(?) By finite geometric series

P
3
logz(n
= 3cin < > + conloss(2)
logs(2)
=3cin (1 _n ) + conloss(2)

— Scln _ 361n10g3(2) + ConlOgS(z)




4. Runtime Complexity

Consider the function h:

h(n) {
if (n <=1) {
return 1
} else {
return h(n/2) + n + 2xh(n/2)
}
}

(a) Find a recurrence T'(n) modeling the worst-case runtime complexity of h(n).

Co ifn <1

2T (%) 4+ ¢1  otherwise

Solution:
T(n)= {

(b) Find a closed form to your answer for (a).

Solution:

The recursion tree has height lg(n), each non-leaf level i has has work c12¢, and the leaf level has work
28" Putting this together, we have:

Ilgn—1 ' lgn—1 ) 1 — 2lgn—1+1
( Z cl2z> +0021g(”) =c ( Z 21> + con = 0171 5 + con
=0

i=0
=c128" —¢; +con

c(n—1)+con

(cot+ci)n—c



