
CSE 332: Data Structures and Parallelism
Heaps and Asymptotics 2 Solutions

Big-Oh Proofs
For each of the following, prove that f ∈ O(g).

(a) f(n) = 7n g(n) =
n

10

Solution:
Recall that f ∈ O(g) is true if and only if there exists some constant c and some constant n0 > 0 such
that for all n ≥ n0, the expression f(n) ≤ c · g(n) is true by definition of Big-O.
Now, we choose c = 70, n0 = 1. We must now show that f(n) ≤ 70 · g(n) is true for all n ≥ 1.
Note that c · g(n) = 70g(n) = 70

(
n
10

)
= 7n. After substituting, we find the inequality f(n) ≤ c · g(n) is

equivalent to 7n ≤ 7n. We can see this is true for all n > 1, so we conclude that f ∈ O(g) is true.

(b) f(n) = 1000 g(n) = 3n3

Solution:
We follow the same approach as above.
We choose c = 1, n0 = 1000, and so must show that 1000 ≤ 1 · 3n3 for all n ≥ 1000.
Now, note that for all n ≥ 1000 the inequalities 1000 ≤ n, n ≤ n3, and n3 ≤ 3n3 are always true.
By chaining the inequalities together, we see that f(n) = 1000 ≤ n ≤ n3 ≤ 3n3 = c · g(n) for all
n ≥ 1000 and so conclude that f ∈ O(g) is true.

(c) f(n) = 7n2 + 3n g(n) = n4

Solution:
We choose c = 14, n0 = 1. Then, note that f(n) = 7n2 + 3n ≤ 7(n4 + n4) ≤ 14n4 = c · g(n) for all
n ≥ 1. So, we conclude that f ∈ O(g) is true.
(As before, we construct and chain inequalities to establish a relationship between f and g).

(d) f(n) = n+ 2n lg n g(n) = n lg n

Solution:
Choose c = 3, n0 = 2. Then, note that f(n) = n+ 2n lg n ≤ n lg n+ 2n lg n = 3n lg n = c · g(n) for all
n ≥ 2. So, we conclude that f ∈ O(g) is true.

1



Is Your Program Running? Better Catch It!
For each of the following, determine the tight Θ(·) bound for the worst-case runtime in terms of the free variables
of the code snippets.

(a)
1 int x = 0
2 for (int i = n; i >= 0; i−−) {
3 if ((i % 3) == 0) {
4 break
5 }
6 else {
7 x += n
8 }
9 }

Solution:
This is Θ(1) because exactly one of n, n−1, or n−2
will be divisible by three for all possible values of n.
So, the loop runs at most 3 times.

(b)
1 int x = 0
2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < (n * n / 3); j++) {
4 x += j
5 }
6 }

Solution:
We can model the worst-case runtime as:
n−1∑
i=0

n2/3−1∑
j=0

1. This simplifies to:
n−1∑
i=0

n2/3−1∑
j=0

1 =

n−1∑
i=0

n2

3
= n

(
n2

3

)
=

n3

3
. So, the worst-case runtime

is Θ(n3).

(c)
1 int x = 0
2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < i; j++) {
4 x += j
5 }
6 }

Solution:

We can model the worst case runtime as
n−1∑
i=0

i−1∑
j=0

1

which simplifies to
n−1∑
i=0

i =

(
n(n− 1)

2

)
. So, the

worst-case runtime is Θ(n2)

(d)
1 int x = 0
2 for (int i = 0; i < n; i++) {
3 if (n < 100000) {
4 for (int j = 0; j < i * i * n; j++) {
5 x += 1
6 }
7 } else {
8 x += 1
9 }

10 }

Solution:
Recall that when computing the asymptotic complex-
ity, we only care about the behavior as the input goes
to infinity. Once n is large enough, we will only ex-
ecute the second branch of the if statement, which
means the runtime of the code can be modeled as
n−1∑
i=0

1 = n. So, the worst-case runtime is Θ(n).

2



(e)
1 int x = 0
2 for (int i = 0; i < n; i++) {
3 if (i % 5 == 0) {
4 for (int j = 0; j < n; j++) {
5 if (i == j) {
6 for (int k = 0; k < n; k++) {
7 x += i * j * k
8 }
9 }

10 }
11 }
12 }

Solution:
We know the runtime of the outer-most loop is
n−1∑
i=0

? , where ? is the (currently unknown) runtime

of the middle and inner-most loops. We also know the

middle loop by itself has a runtime of
n−1∑
j=0

? and runs

only a fifth of the time. Therefore, we can refine our

model to
n−1∑
i=0

1

5

n−1∑
j=0

?

.

Now, note that the inner-most if statement is true
exactly only once per each iteration of the middle
loop. So, we can refine our model of the runtime

to
n−1∑
i=0

1

5

n−1∑
j=0

1

+

(
n−1∑
k=0

1

) which simplifies to

n−1∑
i=0

2n

5
=

2n2

5
. Therefore, the worst- case asymptotic

runtime will be Θ(n2).

Asymptotics Analysis
Consider the following method which finds the number of unique Strings within a given array of length n.

1 int numUnique(String[] values) {
2 boolean[] visited = new boolean[values.length]
3 for (int i = 0; i < values.length; i++) {
4 visited[i] = false
5 }
6 int out = 0
7 for (int i = 0; i < values.length; i++) {
8 if (!visited[i]) {
9 out += 1

10 for (int j = i; j < values.length; j++) {
11 if (values[i].equals(values[j])) {
12 visited[j] = true
13 }
14 }
15 }
16 }
17 return out;
18 }

Determine the tight O(·), Ω(·), and Θ(·) bounds of each function below. If there is no Θ(·) bound, explain
why. Start by (1) constructing an equation that models each function then (2) simplifying and finding a closed
form.

(a) f(n) = the worst-case runtime of numUnique

Solution:
In the worst case, the array will contain entirely unique strings and so must run the inner loop n times.

So, f(n) =
n−1∑
i=0

1 +
n−1∑
i=0

n−1∑
j=i

1 = n+
n(n+ 1)

2
which means f ∈ O(n2), f ∈ Ω(n2), and f ∈ Θ(n2).

3



(b) g(n) = the best-case runtime of numUnique

Solution:
In the best case, the array will contain the exact same string repeated n times, causing the inner loop to
run only once.

So, g(n) =
n−1∑
i=0

1 +

n−1∑
i=0

1 +

n−1∑
j=0

1 = 3n which means g ∈ O(n), g ∈ Ω(n), and g ∈ Θ(n).

(c) h(n) = the amount of memory used by numUnique (the space complexity)

Solution:
numUnique will create a boolean array of length n and allocate a few extra variables, which take up a
constant and therefore negliable amount of memory.
So, h(n) = n+ k (where k is some constant) which means h ∈ O(n), h ∈ Ω(n), and h ∈ Θ(n).

4



Analyzing Data Structures
(a) Suppose we have a worklist list which contains n integers. The following code creates a heap which

contains only 25 elements:
1 PriorityWorkList<Integer> heap = new MinFourHeap<Integer>()
2 while (list.hasWork()) {
3 if (heap.size() >= 25) {
4 heap.removeMin()
5 }
6 heap.add(list.next())
7 }

Determine the tight Θ(·) bounds for the worst-case runtime complexity and the space complexity of this
code snippet. Assume that the given worklist of integers has Θ(1) runtime for hasWork() and next().

Solution:
For the first 25 insertions, the size of heap prior to execution of the loop will be less than 25. Therefore,
the if statement will not be executed. So, we can model the runtime of these insertions as

∑25
i=1 log(i).

Then, for all the other insertions, we will have to removeMin() from a heap size 25, then add into a heap
size 24. We can model the runtime of these insertions as

∑n
i=26 log(25) + log(24).

So, our final summation for the runtime is
25∑
i=1

log(i) +

n∑
i=26

(log(25) + log(24)).

But now, notice that
∑25

i=1 log(i) is just some constant (call it C) and log(25)+ log(24) is also just some
constant (call it D), so our summation can be rewritten as C +

∑n
i=26D = C + (n− 26)D. This means

the runtime complexity is Θ(n).
Because our heap will always contain at most 25 elements regardless of the initial size of the worklist, we
know the space complexity will be Θ(1).

5



Oh Snap!
For each question below, explain what’s wrong with the provided answer. The problem might be the reasoning,
the conclusion, or both!

(a) Determine the tight Θ(·) bound for the worst-case runtime of the following piece of code:
1 public static int waddup(int n) {
2 if (n > 10000) {
3 return n
4 } else {
5 for (int i = 0; i < n; i++) {
6 System.out.println("It's dat boi!")
7 }
8 return 0
9 }

10 }

Bad answer: The runtime of this function is O(n), because when searching for an upper bound, we
always analyze the code branch with the highest runtime. We see the first branch is O(1), but the second
branch is O(n).

Solution:
The tightest upper bound is O(1), not O(n). Picking the code branch with the highest runtime is not
necessarily the correct thing to do – instead, we must consider what the runtime is as the input grows
towards by infinity.
In this case, we can see the first branch will be executed for when n > 10000, so we consider only that
branch when computing the asymptotic complexity.

(b) Determine the tight Θ(·) worst-case runtime of the following piece of code:
1 public static void trick(int n) {
2 for (int i = 1; i < Math.pow(2, n); i *= 2) {
3 for (int j = 0; j < n; j++) {
4 System.out.println("(" + i + "," + j + ")")
5 }
6 }
7 }

Bad answer: The runtime of this function is O(n2), because the outer loop is conditioned on an expression
with n and so is the inner loop.

Solution:
While the runtime is O(n2), the explanation is incorrect. In particular, it glosses over the fact that we
are iterating from 0 to 2n − 1 in the outer loop.
A more precise explanation should explain that while the outer loop terminates when i = 2n, we are also
multiplying i by 2 per each iteration. This means the outer loop does lg(2n) iterations, which is just
equivalent to n.

The inner loop does
n−1∑
j=0

1 = n iterations, so we conclude the overall runtime is O(n2).

6



Look Before You Heap
(a) Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.

Now, insert the same values into a max heap.
Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.

Solution:

6

10

17

32

12

7

20 15

minHeap

32

20

15

7

12

17

10 6

maxHeap

6

7

17

32

12

10

20 15

floyd’s

(b) Insert 1, 0, 1, 1, 0 into a min heap.

Solution:

0

0

1 1

1

minHeap

7


