CSE 332: Data Structures \& Parallelism Lecture 25: P, NP, NP-Complete (part 2)

Ruth Anderson

Winter 2018

Today’s Agenda

- A Few Problems:
- Euler Circuits
- Hamiltonian Circuits
- Intractability: P and NP
- NP-Complete
- What now?

A Glimmer of Hope

- If given a candidate solution to a problem, we can check if that solution is correct in polynomial-time, then maybe a polynomial-time solution exists?
- Can we do this with Hamiltonian Circuit?
- Given a candidate path, is it a Hamiltonian Circuit?

The Complexity Class NP

- Definition: NP is the set of all problems for which a given candidate solution can be tested in polynomial time
- Examples of problems in NP:
- Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
- Vertex Cover: Given a subset of vertices, do they cover all edges?
- All problems that are in P (why?)

NP

Hamiltonian Circuit
Satisfiability (SAT)
Vertex Cover
Travelling Salesman

Why do we call it "NP"?

- NP stands for Nondeterministic Polynomial time
- Why "nondeterministic"? Corresponds to algorithms that can guess a solution (if it exists), the solution is then verified to be correct in polynomial time
- Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each branch point.
- Nondeterministic algorithms don't exist - purely theoretical idea invented to understand how hard a problem could be

Your Chance to Win a Turing Award!

It is generally believed that $P \neq N P$,
i.e. there are problems in NP that are not in P

- But no one has been able to show even one such problem!
- This is the fundamental open problem in theoretical computer science
- Nearly everyone has given up trying to prove it. Instead, theoreticians prove theorems about what follows once we assume $P \neq N P$!

NP-completeness

- Set of problems in NP that (we are pretty sure) cannot be solved in polynomial time.
- These are thought of as the hardest problems in the class NP.
- Interesting fact: If any one NP-complete problem could be solved in polynomial time, then all NP-complete problems could be solved in polynomial time.
- Also: If any NP-complete problem is in P, then all of NP is in P

Saving Your Job

- Try as you might, every solution you come up with for the Hamiltonian Circuit problem runs in exponential time.....
- You have to report back to your boss.
- Your options:
- Keep working
- Come up with an alternative plan...

In general, what to do with a Hard Problem

- Your problem seems really hard.
- If you can transform a known NP-complete problem into the one you're trying to solve, then you can stop working on your problem!

Your Third Task

- Your boss buys your story that others couldn't solve the last problem.
- Again, your company has to send someone by car to a set of cities. There is a road between every pair of cities.
- The primary cost is distance traveled (which translates to fuel costs).
- Your boss wants you to figure out how to drive to each city exactly once, then return to the first city, while staying within a fixed mileage budget k.

Travelling Salesman Problem (TSP)

- Your third task is basically TSP:
- Given complete weighted graph G, integer k.
- Is there a cycle that visits all vertices with cost <= k ?
- One of the canonical problems.
- Note difference from Hamiltonian cycle:
- graph is complete
- we care about weight.

Transforming Hamiltonian Cycle to TSP

- We can "reduce" Hamiltonian Cycle to TSP.
- Given graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:
- Assign weight of 1 to each edge
- Augment the graph with edges until it is a complete graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$
- Assign weights of 2 to the new edges
- Let $\mathrm{k}=|\mathrm{V}|$.

Notes:

- The transformation must take polynomial time
- You reduce the known NP-complete problem into your problem (not the other way around)
- In this case we are assuming Hamiltonian Cycle is our known NP-complete problem (in reality, both are known NP-complete)

Example

G
Input to Hamiltonian
Circuit Problem

Example

Input to Hamiltonian
Circuit Problem

Polynomial time transformation

G'
Input to Traveling
Salesman Problem

Polynomial-time transformation

- G' has a TSP tour of weight |V| iff G has a Hamiltonian Cycle.
- What was the cost of transforming HC into TSP?
- In the end, because there is a polynomial time transformation from HC to TSP, we say TSP is "at least as hard as" Hamiltonian cycle.

What do we do about it?

- Approximation Algorithm:
- Can we get an efficient algorithm that guarantees something close to optimal? (e.g. Answer is guaranteed to be within $1.5 x$ of Optimal, but solved in polynomial time).
- Restrictions:
- Many hard problems are easy for restricted inputs (e.g. graph is always a tree, degree of vertices is always 3 or less).
- Heuristics:
- Can we get something that seems to work well (good approximation/fast enough) most of the time? (e.g. In practice, n is small-ish)

Great Quick Reference

- Computers and Intractability: A Guide to the Theory of NP-Completeness, by Michael S. Garey and David S. Johnson
- For the following problems, circle $\underline{\text { ALL }}$ the sets they belong to:

Determining if a chess move is the best move on an $\mathrm{N} \times \mathrm{N}$ board

NP
NP-complete

- Finding the maximum value in an array

NP
P
NP-complete
None of these

- Finding a cycle that visits each vertex in a graph exactly once

NP
P
NP-complete
None of these

- Finding a cycle that visits each edge in a graph exactly once
- Determining if a program will ever stop running

NP
P
NP-complete
None of these

