Today

- Graphs
 - Topological Sort
 - Graph Traversals
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352
Valid Topological Sorts:
Valid Topological Sorts:

0
Valid Topological Sorts:

0, 1
Valid Topological Sorts:
0, 1, 3
Valid Topological Sorts:

0, 1, 3, 2
Valid Topological Sorts:

0, 1, 3, 2, 4
Valid Topological Sorts:

0, 1, 3, 2, 4
0, 3, 1, 2, 4 ??
Valid Topological Sorts:

0, 1, 3, 2, 4

0, 3, 1, 2, 4 – 3 appears before 1!!!
Valid Topological Sorts:

- 0, 1, 3, 2, 4
- 0, 1, 2, 3, 4
- 1, 0, 2, 3, 4
- 1, 0, 3, 2, 4
- 1, 2, 0, 3, 4
Questions and comments

• Why do we perform topological sorts only on DAGs?

• Is there always a unique answer?

• What DAGs have exactly 1 answer?

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Directed – direction shows relationship/dependency

• Is there always a unique answer?

• What DAGs have exactly 1 answer?

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Directed – direction shows relationship/dependency
 - Acyclic – cycle means no ordering is possible
- Is there always a unique answer?

- What DAGs have exactly 1 answer?

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Directed – direction shows relationship/dependency
 – Acyclic – cycle means no ordering is possible

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph

• What DAGs have exactly 1 answer?
 – Lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Topological Sort Uses

- Figuring out how to finish your degree
- Figuring the order in which to implement classes for Project 2
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w
Valid Topological Sorts:

- 0, 1, 3, 2, 4
- 0, 1, 2, 3, 4
- 1, 0, 2, 3, 4
- 1, 0, 3, 2, 4
- 1, 2, 0, 3, 4
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and *conceptually* remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w)\) in \(E \)), decrement the in-degree of \(w \)
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w)\) in \(E \)),
 decrement the in-degree of \(w \)

\[
\begin{array}{c|c|c}
\text{In-degree} & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 2 & 1 \\
2 & 2 & 2 \\
3 & 2 & _ \\
4 & 2 & _ \\
\end{array}
\]
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E),
 decrement the in-degree of w
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side
2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v, w)\) in \(E \)), decrement the in-degree of \(w \)

<table>
<thead>
<tr>
<th>In-degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Output: 0
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w) \in E\)), decrement the in-degree of \(w \)

<table>
<thead>
<tr>
<th>In-degree</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>/</td>
</tr>
</tbody>
</table>

Output: 0
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w)\) in \(E \)),
 decrement the in-degree of \(w \)

 ![Diagram](image)

 In-degree

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

 Output: 0, 1
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w)\) in \(E\)), decrement the in-degree of \(w \)

In-degree

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3 /</td>
<td>2</td>
<td>4 /</td>
<td>4 /</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3 /</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>4 /</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Output: 0, 1
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w

In-degree

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Output: 0, 1
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w) \) in \(E \)), decrement the in-degree of \(w \)

Output: 0, 1, 2
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w

```
In-degree

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3/</td>
<td>2</td>
<td>4/</td>
<td>4/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>3/</td>
<td>3/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/</td>
</tr>
</tbody>
</table>
```

Output: 0, 1, 2
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v, w) \) in \(E \)), decrement the in-degree of \(w \)

\[
\begin{array}{c|c}
\text{In-degree} & \text{Vertex} \\
0 & 0 \\
1 & 0 \\
2 & 0 \\
3 & 0 \\
4 & 1 \\
\end{array}
\]

Output: 0, 1, 2
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(w \) adjacent to \(v \) (i.e. \(w \) such that \((v,w) \in E\)),
 decrement the in-degree of \(w \)

Output: 0, 1, 2, 3

<table>
<thead>
<tr>
<th>In-degree</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

2/23/2018
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w

Output: 0, 1, 2, 3
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side
2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w

Output: 0, 1, 2, 3, 4
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1
 0

Output: 126
 142
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126
 142
 143

2/23/2018
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126 142 143 311
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126 142 143 311 331
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0
 0 0

Output: 126
 142
 143
 311
 331
 332
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126 142 143 311 331 332 312
Example

Output: 126
142
143
311
331
332
312
341

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0 0
 0 0
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0 0 0
 0 0 0 0 0

Output: 126
 142
 143
 311
 331
 332
 312
 341
 351
 352
 440

2/23/2018
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126 142 143 311 331 332 333 341 351 352 440

2/23/2018
A couple of things to note

• Needed a vertex with in-degree of 0 to start
 – No cycles
• Ties between vertices with in-degrees of 0 can be broken arbitrarily
 – Potentially many different correct orders
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

You can use a helper variable `d` – the out degree of a vertex
Topological Sort: Running time?

labelEachVertexWithItsInDegree(); \(O(V+E) \)
for(ctr=0; ctr < numVertices; ctr++){
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
}

You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

```
labelEachVertexWithItsInDegree(); O(V+E)
for(ctr=0; ctr < numVertices; ctr++){
  V times
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
    w.indegree--;
}
```

You can use a helper variable \(d\) – the out degree of a vertex
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree(); O(V+E)
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero(); O(V)
    put v next in output
    for each w adjacent to v
        w.indegree--; 
}
```

You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

labelEachVertexWithItsInDegree(); \[O(V+E) \]
for(ctr=0; ctr < numVertices; ctr++) { \[V \text{ times} \]
 v = findNewVertexOfDegreeZero(); \[O(V) \]
 put v next in output \[O(1) \]
 for each w adjacent to v
 w.indegree--;
}

You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree(); O(V+E)
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero(); O(V)
    put v next in output O(1)
    for each w adjacent to v d times
        w.indegree--;
}
```

You can use a helper variable d – the out degree of a vertex
You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree(); \quad O(V+E)
for ctr=0; ctr < numVertices; ctr++\{ \quad V \text{ times}
    v = findNewVertexOfDegreeZero(); \quad O(V)
    put v next in output \quad O(1)
    for each w adjacent to v \quad d \text{ times}
        w.indegree--; \quad O(1)
\}
```

\[O(V + E + V^*(V + 1 + d)) \]

You can use a helper variable d – the out degree of a vertex
Topological Sort: Running time?

```plaintext
labelEachVertexWithItsInDegree(); \quad O(V+E)
for(ctr=0; ctr < numVertices; ctr++) { \quad V times
    v = findNewVertexOfDegreeZero(); \quad O(V)
    put v next in output \quad O(1)
    for each w adjacent to v \quad d times
        w.indegree--; \quad O(1)
}
```

\[O(V + E + V^2 + V + V^*d) \]

You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

```
labelEachVertexWithItsInDegree(); O(V+E)
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero(); O(V)
    put v next in output O(1)
    for each w adjacent to v d times
        w.indegree--; O(1)
}
```

- $O(V^2 + E + V^*d)$
- $O(V + E + V^2 + V + V^*d))$
- $O(V + E + V^*(V + 1 + d))$

You can use a helper variable d – the out degree of a vertex
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree(); O(V+E)
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero(); O(V)
    put v next in output O(1)
    for each w adjacent to v d times
        w.indegree--; O(1)
}
```

\[O(V + E + V^*(V + 1 + d)) \]
\[O(V + E + V^2 + V + V^*d) \]
\[O(V^2 + E + E) \]

You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

```
labelEachVertexWithItsInDegree(); O(V+E)
for(ctr=0; ctr < numVertices; ctr++) { V times
  v = findNewVertexOfDegreeZero(); O(V)
  put v next in output O(1)
  for each w adjacent to v d times
    w.indegree--; O(1)
}
```

\[O(V + E + V^*(V + 1 + d)) \]
\[O(V + E + V^2 + V + V^*d) \]
\[O(V^2 + E + E) \]
\[O(V^2 + E) \]

You can use a helper variable \(d \) – the out degree of a vertex
Topological Sort: Running time?

What is the worst-case running time?
- Initialization $O(|V| + |E|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O(|V|^2 + |E|)$ – not good for a sparse graph!

```java
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```
Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement the in-degree of w, if new degree is 0, enqueue it
Topological Sort (optimized): Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(w);
    }
}
```
Topological Sort (optimized): Running time?

```java
labelAllAndEnqueueZeros();
for (ctr=0; ctr < numVertices; ctr++) {  \( O(V + E) \) V times
    v = dequeue();  \( O(1) \)
    put v next in output  \( O(1) \)
    for each w adjacent to v {  d times
        w.indegree--;  \( O(1) \)
        if (w.indegree == 0)  \( O(1) \)
            enqueue(w);  \( O(1) \)
    }
}
```

- What is the worst-case running time?
 - Initialization: \(O(|V|+|E|) \) (assuming adjacency list)
 - Sum of all enqueues and dequeues: \(O(|V|) \)
 - Sum of all decrements: \(O(|E|) \) (assuming adjacency list)
 - So total is \(O(|E| + |V|) \) – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes \textit{reachable} (i.e., there exists a path) from v
- Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Related Questions:
- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Graph Traversal: Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet();
 pending.add(start)
 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running time and options

- Assuming add and remove are \(O(1) \), entire traversal is \(O(|E|) \)
 - Use an adjacency list representation

- The order we traverse depends entirely on how add and remove work/are implemented
 - Depth-first graph search (DFS): a stack
 - Breadth-first graph search (BFS): a queue

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first
Recursive DFS, Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and “process” (e.g. print) start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
- The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed:
• A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed:
• A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: A
- A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: A
- A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: A, C
• A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: A, C, F
- A different but perfectly fine traversal
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

Order processed: A, C, F

• A different but perfectly fine traversal
DFS with a stack, Example: trees

```java
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and "process"
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed:
- A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed:

- A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: A
• A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: A
• A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: A, B
• A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while (q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if (u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: A, B
• A “level-order” traversal
BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

Order processed: A, B, C, D, E, F, G, H
• A “level-order” traversal
DFS/BFS Comparison

Breadth-first search:
- Always finds shortest paths, i.e., “optimal solutions
 - Better for “what is the shortest path from \(x\) to \(y\)”
- Queue may hold \(O(|V|)\) nodes (e.g. at the bottom level of binary tree of height \(h\), \(2^h\) nodes in queue)

Depth-first search:
- Can use less space in finding a path
 - If *longest path* in the graph is \(p\) and highest out-degree is \(d\) then DFS stack never has more than \(d*p\) elements

A third approach: *Iterative deepening (IDDFS)*:
- Try DFS but don’t allow recursion more than \(k\) levels deep.
 - If that fails, increment \(k\) and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.
Saving the path

• Our graph traversals can answer the “reachability question”:
 – “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• A: Like this:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 – When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Example using BFS

What is a path from Seattle to Austin
 – Remember marked nodes are not re-enqueued
 – Note shortest paths may not be unique